Skip to main content
Log in

Analysis of wear of fused silica moulding using glassy carbon moulds

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Optical components made of fused silica are in great demand due to the material’s exceptional properties: a broad transmission range from 185 nm to 2.5 μm, low coefficient of thermal expansion, low thermal conductivity and high radiation resistance. For the production of complex optical components in medium and large quantities, the technology of precision glass moulding is particularly suitable. Here, a glass blank is heated up to the moulding temperature and moulded into the desired shape by means of two moulding tools without any subsequent work. The production of the complex moulding tools is still costly in terms of labor and time but the efficiency of the process increases with the number of optical components made by using a pair of moulding tools. Hence, the wear of the moulding tools determines the efficiency of the process. In this paper, an experimental study and FE simulation are presented in order to investigate the wear of the glassy carbon moulding tools in moulding of fused silica. For the FE simulation, the viscoelasticity of fused silica and the friction coefficient between fused silica and glassy carbon were determined. The influence of the process parameters temperature and pressing force on the wear of moulding tools was analysed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Bobzin K, Bagcivan N, Brögelmann T, Münstermann T (2014) Correlation between chemical glass components and the glass sticking on sputtered PtIr physical vapour deposition coatings for precision blank moulding. Mater Sci Appl. doi:10.4236/msa.2014.55037

    Google Scholar 

  2. Bobzin K, Bagcivan N, Ewering M, Brugnara RH, Münstermann T (2012) Influence of interlayer thickness of a thin noble metal MSIP-PVD coating on compound and system properties for glass lens moulding. Prod Eng Res Dev. doi:10.1007/s11740-012-0385-7

    Google Scholar 

  3. Ma KJ, Chien HH, Chuan WH, Chao CL, Hwang KC (2008) Design of protective coatings for glass lens molding. Key Eng Mater. doi:10.4028/www.scientific.net/KEM.364-366.655

    Google Scholar 

  4. Rieser D, Spieß G, Manns P (2008) Investigations on glass-to-mold sticking in the hot forming process. J Non-Cryst Solids. doi:10.1016/j.jnoncrysol.2007.02.095

    Google Scholar 

  5. Hagen J, Burmeister F, Fromm A, Manns P, Kleer G (2009) Iridium coatings with titanium sub-layer deposited by RF magnetron sputtering: mechanical properties and contact behavior with RoHS-compliant glass melt. Plasma Processes Polym. doi:10.1002/ppap.200931701

    Google Scholar 

  6. Klocke F, Bergs T, Georgiadis K, Sarikaya H, Wang F (2008) Coating systems for precision glass molding tools. In: Proceedings of the 7th international conference THE coatings, Chalkidiki, Greece, 1–3 Oct 2008, pp 209–218

  7. Mehner A, Zoch H-W, Datchary W, Pongs G, Kunzmann H (2006) Sol–gel coatings for high precision optical molds. CIRP Ann Manuf Technol. doi:10.1016/S0007-8506(07)60489-2

    Google Scholar 

  8. Klocke F, Bouzakis KD, Georgiadis K, Gerardis S, Skordaris G, Pappa M (2011) Adhesive interlayers’ effect on the entire structure strength of glass moulding tools’ Pt–Ir coatings by nanotests determined. Surf Coat Technol. doi:10.1016/j.surfcoat.2011.07.060

    Google Scholar 

  9. He P, Li L, Yu J, Huang W, Yen YC, Lee LJ, Yi AY (2013) Graphene-coated Si mold for precision glass optics molding. Opt Lett. doi:10.1364/OL.38.002625

    Google Scholar 

  10. Ma KJ, Chien HH, Vattikuti SVP, Kuo CH, Huo CB, Chao CL (2010) Thermal stability of Al2O3 coated low transition temperature glass. Defect Diffus Forum. doi:10.4028/www.scientific.net/DDF.297-301.875

    Google Scholar 

  11. Takahashi M, Sugimoto K, Maeda R (2005) Nanoimprint of glass materials with glassy carbon molds fabricated by focused-ion-beam etching. Jpn J Appl Phys. doi:10.1143/JJAP.44.5600

    Google Scholar 

  12. Dambon O, Wang F, Klocke F, Pongs G, Bresseler B, Chen Y, Yi AY (2009) Efficient mould manufacturing for precision glass moulding. J Vac Sci Technol. doi:10.1116/1.3056171

    Google Scholar 

  13. Pongs G, Klocke F, Dambon O, Wang F, Brecher C, Winterschladen M (2008) Finite element analysis of glass moulding. Proc IMechE 10:10. doi:10.1243/09544054JEM857

    Google Scholar 

  14. Wang F (2013) Simulating the precision glass molding process. Dissertation, RWTH Aachen University

  15. Shetty DK, Gordon RS (1979) Stress-relaxation technique for deformation studies in four-point bend tests: application to polycrystalline ceramics at elevated temperatures. J Mater Sci. doi:10.1007/BF00688422

    Google Scholar 

Download references

Acknowledgments

The authors would like to thank the German Research Foundation (DFG) for funding the research project “Grundlegende Untersuchung der Wechselwirkungsmechanismen zwischen Quarzglas, Werkzeugwerkstoff und Prozessatmosphäre bei hoher Temperatur und unter hohem Druck” KL 500/100-1.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julia Dukwen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Klocke, F., Dambon, O., Liu, G. et al. Analysis of wear of fused silica moulding using glassy carbon moulds. Prod. Eng. Res. Devel. 10, 367–374 (2016). https://doi.org/10.1007/s11740-016-0681-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-016-0681-8

Keywords

Navigation