Skip to main content
Log in

Analysis of the fluid pressure, load capacity, and coefficient of friction of an elliptic machine hammer peened surface structure in hydrodynamic lubrication

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Recently, the velocity distribution within an elliptical machine hammer peened (MHP) surface structure was discussed by solving analytically the Reynolds equation using Full-Sommerfeld boundary condition (Trauth et al. in Tribol Lett 60(19):1–13, 2015). However, in order to design the MHP process to obtain defined friction characteristics and load capacities of a fluid film, the pressure distribution has to be analyzed as well. Thus, in this contribution, the fluid pressure is discussed using Full-Sommerfeld first, then the previous work is extended by the Swift–Stieber boundary condition to account for cavitation effects. Thereby, the influence of geometry and process parameters on the fluid pressure, load capacity and coefficient of friction will be analyzed both using an approach based on absolute and dimensionless numbers. To asses the influence of lateral effects, the semi-analytic 1D results are compared to numerical 2D results based on the Raimondi approach. Thereby, a recommendation for a surface design manufactured by machine hammer peening is formulated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Abbreviations

a :

Longer semi-axis of the ellipse (mm)

b :

Shorter semi-axis of the ellipse (mm

\( C_1, C_2 \) :

Constant of integration (–)

d :

Diameter of the MHP head (mm

f :

Frequency of the MHP head (Hz

F :

Impact force of the MHP head (N)

\( F_L \) :

Load bearing capacity (N)

\( \tilde{F_L} \) :

Dimensionless load capacity (–)

\( F_T \) :

Shear force (N)

hh(x):

Height of the dimple (mm)

\( h_0 \) :

Fluid film thickness (mm)

\( h_p \) :

Maximum structure depth (mm)

\( \tilde{h} \) :

Dimensionless structure depth (–)

l :

Length of the computational domain (mm)

\( l_p \) :

Line pitch (mm)

pp(x):

Fluid pressure (MPa mm)

\( p_1, p_2 \) :

Inlet (1) and outlet fluid pressure (MPa mm)

\(\tilde{p} \) :

Dimensionless fluid pressure (–)

\( r_p \) :

Structure length (mm)

s :

Substitution variable (–)

t :

Substitution variable (–)

\( U_1, U_2\) :

Longitudinal velocity of contact body 1 or 2 (mm/s)

v :

Machine feed (mm/s)

\( W_1, W_2 \) :

Longitudinal velocity of contact body 1 or 2 (mm/s)

\( x* \) :

X-coordinate of intersection of the ellipse (mm)

\( \tilde{x} \) :

Dimensionless length (–)

\( y* \) :

Y-coordinate of intersection of the ellipse (mm)

z :

Z-direction (–)

\( \alpha \) :

Structure density (–)

\(\eta \) :

Dynamic viscosity [\(\hbox {Ns}/\hbox {m}^{-2}\)].

\(\tau _L(x)\) :

Frictional shear stress (MPa mm)

\(\lambda \) :

Texture aspect ratio (–)

\(\mu \) :

Coefficient of friction (–)

References

  1. Trauth D, Feuerhack A, Mattfeld P, Klocke F (2015) Analysis of the velocity distribution of an elliptic surface structure manufactured by machine hammer peening. Tribol Lett 60(19):1–13. doi:10.1007/s11249-015-0595-1

    Google Scholar 

  2. Trauth D, Klocke F, Schongen F, Shirobokov A (2013) Analyse und Modellierung der Schlagkraft beim elektro-dynamischen Festklopfen zur kraftbasierten Prozessauslegung. UTFSci 3:1–8

    Google Scholar 

  3. Steitz M, Scheil J, Müller C, Groche P (2013) Effect of process parameters on surface roughness in hammer peening and deep rolling. Key Eng Mat 554–557:1887–1901. doi:10.4028/www.scientific.net/KEM.554-557.1887

    Article  Google Scholar 

  4. Klocke F, Trauth D, Schongen F, Terhorst M (2013) Time-efficient process design of machine hammer peening—prediction of the surface layer state using similitude theory. Wt Online 10:758–763

    Google Scholar 

  5. Scheil J, Müller C, Steitz M, Groche P (2013) Influence of process parameters on surface hardening in hammer peening and deep rolling. Key Eng Mat 554–557:1819–1827. doi:10.4028/www.scientific.net/KEM.554-557.1819

    Article  Google Scholar 

  6. Wied J (2011) Oberflächenbehandlung von Umformwerkzeugen durch Festklopfen. PHD-Thesis, Darmstadt

  7. Lienert F, Hoffmeister J, Schulze V (2013) Residual stress depth distribution after piezo peening of quenched and tempered AISI 4140. Mat Sci Forum 768–769:526–533. doi:10.4028/www.scientific.net/MSF.768-769.526

    Article  Google Scholar 

  8. Löcker C (2006) Working, smoothing and cold-hardening of the surface of tools, machine parts or other parts comprises hammering the surface with an electromagnetically controlled hammer head. German Patent DE102006033004A1

  9. Löcker C (2012) Method and device for the technique of cold microforging any freely formed 3D surfaces. United States Patent US 8 166 793 B2

  10. Bleicher F, Lechner C, Habersohn C, Kozeschnik E, Adjassoho B, Kaminiski H (2012) Mechanism of surface modification using machine hammer peening technology. CIRP Annals - Manuf Technol 61(1):375–378. doi:10.1016/j.cirp.2012.03.139

    Article  Google Scholar 

  11. Bleicher F, Lechner C, Habersohn C, Obermair M, Heindl F, Ripoll MR (2013) Improving the tribological characteristics of tool and mould surfaces by machine hammer peening. CIRP Annals - Manuf Technol 62(1):239–242. doi:10.1016/j.cirp.2013.03.043

    Article  Google Scholar 

  12. Ripoll MR, Heindl F, Lechner C, Habersohn C, Jech M, Bleicher F (2014) Improving wear resistance of functional surfaces using the machine hammer peening technique. Tribol Mat Surf Interf 8(1):21–26. doi:10.1179/1751584X14Y.0000000063

    Article  Google Scholar 

  13. Lechner C, Bleicher F, Habersohn C, Bauer C, Goessinger S (2012) The use of machine hammer peening for smoothing and structuring of surfaces. Annals DAAAM 23(1):1–6

    Google Scholar 

  14. Trauth D, Klocke F, Welling D, Terhorst M, Mattfeld P, Klink A (2015) Investigation of the surface integrity and fatigue strength of Inconel718 after wire EDM and machine hammer peening. Int J Mater Forming, online first

  15. Steitz M, Philipp S, Groche P (2015) Influence of Hammer–Peened surface textures on friction behavior. Tribol Lett 58(24):1–8. doi:10.1007/s11249-015-0502-9

    Google Scholar 

  16. Klocke F, Trauth D, Schongen F, Shirobokov A (2014) Analysis of friction between stainless steel sheets and machine hammer peened structured tool surfaces: experimental and numerical investigation of the lubricated interaction gap. Prod Eng 8(3):263–272. doi:10.1007/s11740-013-0519-6

    Article  Google Scholar 

  17. Klocke F, Trauth D, Terhorst M, Mattfeld P (2014) Wear analysis of tool surfaces structured by machine hammer peening for foil-free forming of stainless steel. Adv Mater Res 1018:317–324. doi:10.4028/www.scientific.net/AMR.1018.317

    Article  Google Scholar 

  18. Trauth D, Klocke F, Terhorst M, Mattfeld P (2015) Physicochemical analysis of machine hammer peened surface structures for deep drawing: determination of the work of adhesion and spreading pressure of lubrication to surface structure. J Tribol 137(2):1–7. doi:10.1115/1.4029199

    Article  Google Scholar 

  19. Reynolds O (1927) Theorie der Schmiermittelreibung. In: Ostwald W (ed) Ostwalds Klassiker der exakten Wissenschaften. Akademische Verlagsgesellschaft, Leipzig, p 218

    Google Scholar 

  20. Bower GS (1946) Film lubrication of parallel thrust surfaces. Proc Inst Mech Eng 155:49

    Article  Google Scholar 

  21. OMFRS Lord Rayleigh (1918) Notes on the theory of lubrication. Phil Mag J Sci 35:1–12. doi:10.1080/14786440108635730

    Article  Google Scholar 

  22. Kettleborough CF (1961) An approximate analytical solution for the stepped bearing. J Appl Mech 28(4):507–510. doi:10.1115/1.3641775

    Article  MATH  Google Scholar 

  23. Charnes A, Saibel E (1952) On the solution of the Reynolds equation for slider-bearing lubrication I. Trans ASME 74:867–873

    Google Scholar 

  24. Frössel W (1961) Berechnung axialer Gleitlager mit balligen Gleitflächen. Konstruktion 13:253–67

    Google Scholar 

  25. Charnes A, Saibel E, Ying ASC (1953) On the solution of the Reynolds equation for slider-bearing lubrication III. Effect of transverse curvature. Trans ASME 75:507–513

    Google Scholar 

  26. Raimondi AA (1960) The influence of longitudinal and transverse profil on the load capacity of pivoted pad bearings. Trans ASLE 3(2):265–276. doi:10.1080/05698196008972412

    Article  Google Scholar 

  27. Wilcock DF (1955) The hydrodynamic pocket bearing. Trans ASME 77:311–319

    Google Scholar 

  28. Kettleborough CF (1956) The hydrodynamic pocket thrust-bearing. Proc Inst Mech Eng 170:535–544. doi:10.1243/PIME_PROC_1956_170_055_02

    Article  Google Scholar 

  29. Brizmer V, Kligerman Y, Etison I (2003) A laser surface textured parallel thrust bearing. Tribol Trans 46(3):397–403. doi:10.1080/10402000308982643

    Article  Google Scholar 

  30. Brizmer V, Kligerman Y (2012) A laser surface textured journal bearing. J Tribol 134(3):031702–031702-9. doi:10.1115/1.4006511

    Article  Google Scholar 

  31. Dobrica MB, Fillon M (2006) Thermohydrodynamic behavior of a slider pocket bearing. J Tribol 128(2):312–328. doi:10.1115/1.2162914

    Article  Google Scholar 

  32. Dobrica MB, Fillon M, Pascovici MD, Cicone T (2010) Optimizing surface texture for hydrodynamic lubricated contacts using a mass-conserving numerical approach. Proc Inst Mech Eng Part J: J Eng Tribol 224(8):737–750. doi:10.1243/13506501JET673

    Article  Google Scholar 

  33. Ramesh A, Akram W, Mishra SP, Cannon AH, Polycarpou AA, King WP (2013) Friction characteristics of microtextured surfaces under mixed and hydrodynamic lubrication. Tribol Int 57(1):170–6. doi:10.1016/j.triboint.2012.07.020

    Article  Google Scholar 

  34. Dobrica MB, Fillon M (2009) About the validity of Reynolds equation and inertia effects in textured sliders of infinite width. Proc Inst Mech Eng Part J: J Eng Tribol 223(1):69–78

    Article  Google Scholar 

  35. Ausas R, Ragot P, Leiva J, Jai M, Bayada G, Buscaglia GC (2007) The impact of cavitation model in the analysis of microtextured lubricated journal bearings. J Tribol 129:868–875

    Article  Google Scholar 

  36. Wang H, Yang S, Guo F (2011) Modeling of a grooved parallel bearing with a mass-conserving cavitation algorithm. Tribol Trans 64:227–236

    Article  Google Scholar 

  37. Xiong S, Wang JQ (2012) Steady-State hydrodynamic lubrication modeled with the payvar-salant mass conservation model. J Tribol 134(3)

  38. Gherca AR, Maspeyrot P, Hajjam M, Fatu A (2013) Influence of texture geometry on the hydrodynamic performances of parallel bearings. Tribol Trans 56:321–332

    Article  Google Scholar 

  39. Rahmani R, Shirvani A, Shirvani H (2008) Optimization of partially textured parallel thrust bearings with square-shaped micro-dimples. Trib Trans 50:401–406

    Article  Google Scholar 

  40. Khonsari MM, Booser ER (2008) Applied tribology: bearing design and lubrication. Wiley, Hoboken

    Book  Google Scholar 

  41. Gohar R (2001) Elastohydrodynamics. World Scientific, Singapore

    Book  MATH  Google Scholar 

  42. Dowson D, Taylor CM (1979) Cavitation in bearings. Anual Rev Fluid Mech 11(1):35–65

    Article  Google Scholar 

Download references

Acknowledgments

This work was partly supported by the European Union, Investing in our Future, European Regional Development Fund within the Initiative ’Ziel2.NRW’ [Grant Number: 21060207612] and the German Research Foundation (DFG) [Grant Number: KL 500/135-1].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Trauth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Trauth, D., Stanke, J., Shirobokov, A. et al. Analysis of the fluid pressure, load capacity, and coefficient of friction of an elliptic machine hammer peened surface structure in hydrodynamic lubrication. Prod. Eng. Res. Devel. 10, 539–550 (2016). https://doi.org/10.1007/s11740-016-0696-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-016-0696-1

Keywords

Navigation