Skip to main content
Log in

New tool concept for grinding a plateau-like surface for tribological applications

  • Production Process
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

One of the most important factors for energy efficiency is the reduction of friction in machine elements. The grinding process is often the final machining process in machining hardened steel parts and the resulting surface finish influences the tribological behavior. The combination of grinding with a honing process can generate a plateau-like surface to reduce friction and create an oil reservoir to decrease abrasive wear and improve the fluid film stability. Additional processes like laser machining, micro milling or etching are able to generate micro dimples to improve the reduction of friction. Today, grinding processes are limited to machine plateau-like surfaces. Within this paper, a new tool concept will be presented, composed of a grinding tool with two different grain sizes and a metallic bonding. The use of small abrasive grains generates a smooth surface with low roughness values. A few additional larger grains induce stochastic scratches and create the plateau-like surface. Grinding experiments are conducted to analyze the effect of feed rate, feed angle and ratio between small and large grains on the resulting surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gless M (2010) Waelzkontaktermuedung bei Mischreibung. Dr.-Ing. Dissertation, Otto-von-Guericke-Universitaet Magdeburg

  2. Tomanik E (2008) Friction and wear bench tests of different engine liner surface finishes. Tribol Int 41(11):102–108

    Article  Google Scholar 

  3. Grabon W, Koszela W, Pawlus P, Achwat S (2013) Improving tribological behaviour of piston ring–cylinder liner frictional pair by liner surface texturing. Tribol Int 61:102–108

    Article  Google Scholar 

  4. Denkena B, de Leon L, van der Meer M, Turger A (2009) Flexible polishing with bounded grains for complex ceramic endoprostheses. In: Proceedings of the 24th ASPE annual meeting, USA

  5. Malberg MC, Whitehouse DJ (1993) Characterization of surface texture generated by plateau honing process. Ann CIRP 42(1):637–639

    Article  Google Scholar 

  6. Kaestner J (2013) Methode zur spanenden Herstellung reibungsoptimierender Mikroschmiertaschen. Dr.-Ing. Dissertation, Leibniz Universitaet Hannover

  7. Wakuda M, Yamauchi Y, Kanzaki S, Yasuda Y (2003) Effect of surface texturing on friction reduction between ceramic and steel materials und lubricated sliding contact. Wear 254:356–363

    Article  Google Scholar 

  8. Denkena B, Köhler J, Kästner J, Göttsching T, Dinkelacker F, Ulmer H (2013) Efficient machining of microdimples for friction reduction. J Micro Nano Manuf 1(1):011003–011008-8. doi:10.1115/1.4023757

    Article  Google Scholar 

  9. Flores F (2010) Innovative Honverfahren. Motorenbau. VDI Z. Springer 152:28–31

  10. Denkena B, Grove T, Bremer I, Behrens L (2016) Design of bronze-bonded grinding wheel properties. CIRP Ann Manuf Technol 65(1):333–336

    Article  Google Scholar 

  11. Hecker RL, Liang SY (2003) Predictive modeling of surface roughness in grinding. Int J Mach Tools Manuf 43(8):755–761

    Article  Google Scholar 

  12. Aurich JC, Biermann D, Blum H, Brecher C, Carstensen C, Denkena B, Klocke F, Kroeger M, Steinmann P, Weinert K (2009) Modelling and simulation of process: machine interaction in grinding. Prod Eng Res Dev 3:111–120

    Article  Google Scholar 

  13. Toenshoff HK, Peters J, Inasaki T, Paul T (1992) Modelling and simulation of grinding processes. CIRP Ann Manuf Technol 41(2):677–688

    Article  Google Scholar 

  14. Behrens L (2016) Schleifen von PCBN. Dr.-Ing. Disseration, Leibniz Universitaet Hannover

  15. Kannappan S, Malkin S (1972) Effects of gran size and operating parameters on the mechanics of grinding. J Eng Ind 8:833–842

    Article  Google Scholar 

  16. Denkena B, Koehler J, Kaestner J (2012) Chip formation in grinding: an experimental study. Prod Eng Res Dev 6:107–115

    Article  Google Scholar 

  17. Lierse T (1998) Mechanische und thermische Wirkung beim Schleifen keramischer Werkstoffe. Dr.-Ing. Dissertation, Universitaet Hannover

  18. Uhlmann E, Klein TB, Hochschild L, Baecker C (2011) Influence of structuring by abrasive machining on the tribological properties of workpiece surfaces. Procedia Eng 19:363–370

    Article  Google Scholar 

  19. Uhlmann E, Baecker C, Schroeder N (2013) Surface structuring using kinematic modulation in grinding. Prod Eng Res Dev 7:373–381

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the German Research Foundation (DFG) for founding this work within the collaborative research “Resource Efficient Machine Elements” (SPP1551) and the support of the Federal Ministry of Economics and Technology (BMWi) based on a resolution of the German Federal Parliament by funding the Project “Development of a new tool- and dressing concept customized to the profile grinding of involute toothings with metal bond CBN-tools” (KF2328126AT4).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Maiss.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Denkena, B., Grove, T., Maiss, O. et al. New tool concept for grinding a plateau-like surface for tribological applications. Prod. Eng. Res. Devel. 11, 419–424 (2017). https://doi.org/10.1007/s11740-017-0758-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-017-0758-z

Keywords

Navigation