Skip to main content

Advertisement

Log in

Preconditions for applying an energy price-oriented sequencing rule

  • Production Management
  • Published:
Production Engineering Aims and scope Submit manuscript

Abstract

Rising and increasingly volatile energy prices resulting from increased power feeds from renewable sources such as solar and wind energy are confronting manufacturers with new challenges. If these companies procure their power supplies at fluctuating short-term prices from electricity exchanges or through energy purchasing pools, they can influence the resulting energy costs through production control via its actuating variables while energy consumption remains constant. A form of sequencing that decides at short notice which order will be processed next shows particularly high potential. The energy price-oriented sequencing rule that is introduced in this article prioritises orders with a high energy requirement at times when energy prices are low and gives precedence to orders that require less energy at times when energy prices are high, without neglecting the scheduled completion deadline. However, this sequencing rule can only be applied effectively under certain preconditions. These are elaborated in this article by means of a simulation study that will confirm the way the rule functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Department of Energy and Climate Change of the United Kingdom (2015) Industrial electricity prices in the IEA. BEIS, London. https://www.gov.uk/government/statistical-data-sets/international-industrial-energy-prices

  2. BDEW - Bundesverband Energie- und Wasserwirtschaft (2017) BDEW-Strompreisanalyse Mai 2017. Haushalte und Industrie, Berlin

    Google Scholar 

  3. Bukowski M (2014) Electricity and industrial competitiveness. Forum for Energy Analysis, Warsaw

    Google Scholar 

  4. Weckmanna S, Kuhlmann T, Sauer A (2017) Decentral energy control in a flexible production to balance energy supply and demand. Proc CIRP 61:428–433

    Article  Google Scholar 

  5. Rinck M, Richter J (2015) Die Energiewende handelbar Machen. Magazin für Energiewirtschaft 10(9):34–35

    Google Scholar 

  6. Kallakuri C, Vaidyanathan S, Kelly M, Cluett R (2016) The 2016 International Energy Efficiency Scorecard. American Council for an Energy-Efficient Economy, Washington

    Google Scholar 

  7. Fattahi Meyabadi A, Deihimi MH (2016) A review of demand-side management: reconsidering theoretical framework. Renew Sustain Energy Rev 80:367–379

    Article  Google Scholar 

  8. Kals J, Jonas T, Vandewall R (2010) Betriebliches Energiemanagement: Eine Einführung. Kohlhammer, Stuttgart

    Google Scholar 

  9. Schumacher I, Würfel P (2015) Strategien zur Strombeschaffung in Unternehmen: Energieeinkauf optimieren, Kosten senken. Gabler, Wiesbaden

    Book  Google Scholar 

  10. Federico T (2012) Volatilität – Der Preis der Energiewende gefährdet die Versorgungssicherheit. Energiewirtschaftliche Tagesfragen 62(1/2):39–43

    Google Scholar 

  11. European Energy Exchange (2017) At the heart of energy and commodity trading—markets and products. European Energy Exchange AG, Leipzig. https://www.eex.com/blob/63998/e18188dc9db9943679977aa4a78d943e/neu-e-eex-broschuere-2017-web-data.pdf

  12. Lödding H (2013) Handbook of manufacturing control: fundamentals, description, configuration. Springer, Berlin

    Book  Google Scholar 

  13. Wiendahl H-P (2014) Betriebsorganisation für Ingenieure, 1, revised edition. Hanser, Carl, München

    Google Scholar 

  14. Abdoli S, Semere DT (2014) Investigation on machine tools energy consumptions. Int J Mech Aerosp Ind Mechatron Manuf Eng 8(6):1136–1143

    Google Scholar 

  15. Yoon H-S, Lee J-Y, Kim H-S, Kim M-S, Kim E-S, Shin Y-J, Chu W-S, Ahn S-H (2014) A comparison of energy consumption in bulk forming, subtractive, and additive processes: review and case study. Int J Precis Eng Manuf Green Technol 1(3):261–279

    Article  Google Scholar 

  16. Kellens K, Rodrigues GC, Dewulf W, Duflou JR (2014) Energy and resource efficiency of laser cutting processes: 8th international conference on photonic technologies LANE 2014. Phys Proc 56:854–864

    Article  Google Scholar 

  17. Bruzzone A (2012) Energy-aware scheduling for improving manufacturing process sustainability: a mathematical model for flexible flow shops. CIRP Ann Manuf Technol 61:459–462

    Article  Google Scholar 

  18. Choi Y-C, Xirouchakis P (2014) A production planning in highly automated manufacturing system considering multiple process plans with different energy requirements. Int J Adv Manuf Technol 70:853–867

    Article  Google Scholar 

  19. Böning C, Prinzhorn H, Hund E, Stonis M (2017) A memetic algorithm for an energy-costs-aware flexible jop-shop scheduling problem. Int J Soc Behav Educ Econ Bus Ind Eng 11(5):1223–1236

    Google Scholar 

  20. Artigues C (2013) The energy scheduling problem: industrial case study and constraint propagation techniques. Int J Prod Econ 143(1):13–23

    Article  MathSciNet  Google Scholar 

  21. Keller F, Schönborn C, Reinhart G (2015) Energy-orientated machine scheduling for hybrid flow shops. Proc CIRP 29:156–161

    Article  Google Scholar 

  22. Gong X, Pessemier T de, Joseph W, Martens L (2015) An energy-cost-aware scheduling methodology for sustainable manufacturing. Proc CIRP 29:185–190

    Article  Google Scholar 

  23. Schweers D, Ullmann G, Nyhuis P (2016) Nutzen von Lagerbestand als Energiespeicher. ZWF Zeitschrift für wirtschaftlichen Fabrikbetrieb 111(7–8):431–424

    Google Scholar 

  24. Schultz C, Braun S, Braunreuther S, Reinhart G (2017) Integration of load management into an energy-oriented production control. Proc Manuf 8:144–151

    Google Scholar 

  25. Neugebauer R, Putz M, Schlegel A, Langer T, Franz E, Lorenz S (2012) Energy-sensitive production control in mixed model manufacturing processes. CIRP Int Conf Life Cycle Eng 19:309–404

    Google Scholar 

  26. Fernandez M, Li L, Sun Z (2013) “Just-for-peak” buffer inventory for peak electricity demand reduction of manufacturing systems. Int J Prod Econ 146:178–184

    Article  Google Scholar 

  27. Schmidt M, Bertsch S, Nyhuis P (2014) Schedule compliance operating curves and their application in designing the supply chain of a metal producer. Prod Plan Control 25(2):123–133

    Article  Google Scholar 

  28. Willeke S, Stonis M, Nyhuis P (2017) Potentialanalyse einer energiepreisorientierten Reihenfolgebildung. Wt Werkstattechnik Online 107(9):617–624

    Google Scholar 

Download references

Acknowledgements

The IGF project 17900N “Integration of energy costs in manufacturing control algorithms” of the research association BVL is funded via the German Federation of Industrial Research Associations (AiF) in the program of Industrial Collective Research (IGF) by the Federal Ministry for Economic Affairs and Energy (BMWi) based on a decision of the German Parliament.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Willeke.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Willeke, S., Prinzhorn, H., Stonis, M. et al. Preconditions for applying an energy price-oriented sequencing rule. Prod. Eng. Res. Devel. 12, 73–81 (2018). https://doi.org/10.1007/s11740-017-0782-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11740-017-0782-z

Keywords

Navigation