Skip to main content
Log in

Main flattening directions and Quadtree decomposition for multi-way Wiener filtering

  • Original paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Previous studies have shown that multi-way Wiener filtering improves the restoration of tensors impaired by an additive white Gaussian noise. Multi-way Wiener filtering is based on the distinction between noise and signal subspaces. In this paper, we show that the lower is the signal subspace dimension, the better is the restored tensor. To reduce the signal subspace dimension, we propose a method based on array processing technique to estimate main orientations in a flattened tensor. The rotation of a tensor of its main orientation values permits to concentrate the information along either rows or columns of the flattened tensor. We show that multi-way Wiener filtering performed on the rotated noisy tensor enables an improved recovery of signal tensor. Moreover, we propose in this paper a quadtree decomposition to avoid a blurry effect in the recovered tensor by multi-way Wiener filtering. We show that this proposed block processing reduces the whole blur and restores local characteristics of the signal tensor. Thus, we show that multi-way Wiener filtering is significantly improved thanks to rotations of the estimated main orientations of tensors and a block processing approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kroonenberg P. (1983). Three-mode principal component analysis. DSWO press, Leiden

    Google Scholar 

  2. Kiers H.A.L. (2000). Towards a standardized notation and terminology in multiway analysis. J. Chemom. 14: 105–122

    Article  MathSciNet  Google Scholar 

  3. Alex, M., Vasilescu, O., Terzopoulos, D.: Multilinear analysis of image ensembles: Tensorfaces (2002)

  4. De Lathauwer L., De Moor B. and Vandewalle J. (2000). A multilinear singular value decomposition. SIAM J. Matrix Anal. Appl. 21: 1253–1278

    Article  MATH  MathSciNet  Google Scholar 

  5. Muti D. and Bourennane S. (2007). Survey on tensor signal algebraic filtering. Signal Process. 87: 237–249

    Article  Google Scholar 

  6. Muti D. and Bourennane S. (2005). Multidimensional filtering based on a tensor approach. Signal Process. 85: 2338–2353

    Article  Google Scholar 

  7. Aghajan H.K. and Kailath T. (1993). Sensor array processing techniques for super resolution multi-line-fitting and straight edge detection. IEEE Trans. Image Process. 2(4): 454–465

    Article  Google Scholar 

  8. Sheinvald J. and Kiriati N. (1997). On the magic of SLIDE. Mach. vision Appl. 9: 251–261

    Article  Google Scholar 

  9. Bourennane, S., Marot, J.: Contour estimation by array processing methods. Appl. signal process. Article ID 95634, 15 (2006)

    Google Scholar 

  10. Tucker L. (1966). Some mathematical notes on three-mode factor analysis. Psychometrika 31: 279–311

    Article  MathSciNet  Google Scholar 

  11. Zhang T. and Golub G. (2001). Rank-one approximation to high order tensor. SIAM J. Matrix Anal. Appl. 23(2): 534–550

    Article  MATH  MathSciNet  Google Scholar 

  12. Muti, D., Bourennane, S., Guillaume, M.: SVD based image filtering improvement by means of image rotation. In: Proc. ICASSP (2004)

  13. Duda R.O. and Hart P.E. (1972). Use of the Hough transform to detect lines and curves in pictures. Commun. ACM 15: 11–15

    Article  Google Scholar 

  14. Niblack, W., Petkovic, D.: On improving the accuracy of the Hough transform: theory, simulations and experiments. IEEE Trans. Comput. Vision Pattern Recognit. CVRP’88, pp. 574–579 (1988)

  15. Vaisey, D.J., Gersho, A.: Variable block-size image coding. IEEE Int. Conf. ASSP, pp. 25.1–25.4 (1987)

  16. Saupe D. and Jacob S. (1987). Variance-based quadtrees in fractal image compression. Electron. Lett. 33(1): 46–48

    Article  Google Scholar 

  17. Samet H. (1984). The quadtree and related hierarchical data structure. ACM Comput. Surveys 16(2): 188–260

    Article  MathSciNet  Google Scholar 

  18. Bourennane S. and Marot J. (2006). Estimation of straight line offsets by a high resolution method. IEEE Proc. Vision Image Signal Process. 153(2): 224–229

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salah Bourennane.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Letexier, D., Bourennane, S. & Blanc-Talon, J. Main flattening directions and Quadtree decomposition for multi-way Wiener filtering. SIViP 1, 253–265 (2007). https://doi.org/10.1007/s11760-007-0022-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-007-0022-7

Keywords

Navigation