Abstract
Color correction is the transformation of response values of scanners or digital cameras into a device- independent color space. In general, the transformation is not unique due to different acquisition and viewing illuminants and non-satisfaction of the Luther–Ives condition by a majority of devices. In this paper we propose a method that approximates the optimal color correction in the sense of a minimal mean error. The method is based on a representative set of reflectance spectra that is used to calculate a special basic collection of device metameric blacks and an appropriate fundamental metamer for each sensor response. Combining the fundamental metamer and the basic collection results in a set of reflectances that follows the density distribution of metameric reflectances if calculated by Bayesian inference. Transforming only positive and bounded spectra of the set into an observer’s perceptually uniform color space results in a point cloud that follows the density distribution of device metamers within the metamer mismatch space of acqcuisition system and human observer. The mean value of this set is selected for color correction, since this is the point with a minimal mean color distance to all other points in the cloud. We present the results of various simulation experiments considering different acquisition and viewing illuminants, sensor types, noise levels, and existing methods for comparison.
Similar content being viewed by others
References
ICC: File Format for Color Profiles, 4.0.0 edn (2002). http://www.color.org
DIN6176: Farbmetrische bestimmung von farbabstSnden bei körperfarben nach der din99-formel. DIN Deutsches Institut fnr Normung e.V (2000)
Cui G., Luo M.R., Rigg B., Roesler G., Witt K.: Uniform colour spaces based on the din99 colour-difference formula. Color Res. Appl. 27, 282–290 (2001)
Luther R.: Aus dem gebiet der farbreizmetrik. Z. Tech. Phys. 8, 540–558 (1927)
Ives H.E.: The transformation of color-mixture equations from one system to another. J. Franklin Inst. 16, 673–701 (1915)
Urban P., Grigat R.-R.: The metamer boundary descriptor method for color correction. J. Imaging Sci. Technol. 49, 417–429 (2005)
Hardeberg, J.Y.: Acquisition and reproduction of colour images: colorimetric and multispectral approaches. PhD Thesis, Ecole Nationale SupTrieure des TTlTcommunications, France (1999)
Sharma G.: Digital Color Imaging Handbook 1 edition. CRC PRESS, USA (2003)
Berns R.S.: Billmeyer and Saltzman’s: Principles of Color Technology, 3 edn. Wiley, New York (2000)
König, F.: Die Charakterisierung von Farbsensoren. PhD Thesis, Rheinisch-WestfSlische Technische Hochschule Aachen, Germany (2001)
Urban, P.: Metamere und multispektrale Methoden zur Reproduktion farbiger Vorlagen. PhD Thesis, Technische UniversitSt Hamburg-Harburg, Germany (2005). BoD, ISBN 3833426659
Vrhel, M.J., Trussell, H.J.: Color scanner calibration via a neural network. In: Proceedings of IEEE ICASSP-99, vol. 6, pp. 3465–3468, Phoenix, Arizona (1999)
Hung, P.-C.: Colorimetric calibration for scanners and media. In: Proceedings of SPIE, vol. 1448, pp. 164–174, San Jose (1991)
Finlayson G.D., Drew M.S.: Constrained least-squares regression in color spaces. J. Electron. Imaging 6, 484–493 (1997)
Li, C., Luo, M.R.: A novel approach for generating object spectral reflectance functions from digital cameras. In: IS&T/SID, pp. 99–103. Scottsdale Ariz (2005)
Sharma G.: Targetless scanner color calibration. J. Imaging Sci. Technol. 44, 301–307 (2000)
Sharma G.: Set theoretic estimation for problems in subtractive color. Color Res. Appl. 25, 333–348 (2000)
Shi M., Healey G.: Using reflectance models for color scanner calibration. J. Opt. Soc. Am. A 19, 645–656 (2002)
Shen H.L., Xin J.H.: Spectral characterization of a color scanner by adaptive estimation. J. Opt. Soc. Am. A 21(7), 1125–1130 (2004)
Morovic, P.M., Finlayson, G.D.: Reflectance estimation with uncertainty. In: AIC Colour 05, pp. 507–510. Granada, Spain (2005)
Zhang, X., Brainard, D.H.: Bayesian color correction method for non-colorimetric digital image sensors. In: IS&T/SID, pp. 308–314. Scottsdale Ariz (2004)
Imai, F.H., Berns, R.S.: Spectral estimation using trichromatic digital cameras. In: International Symposium on Multispectral Imaging and Color Reproduction for Digital Archives, pp. 42–49, Chiba University, Chiba (1999)
Finlayson G.D., Morovic P.M.: Metamer constrained color correction. J. Imaging Sci. Technol. 44, 295–300 (2000)
Drew, M.S., Funt, B.V.: Natural metamers. In: CVGIP: Image Understanding, pp. 139–151 (1992)
Wandell, B.A., Farrell, J.E.: Water into wine: Converting scanner rgb to tristimulus xyz. In: SPIE: Device-Independent Color Imaging and Imaging Systems Integration, vol. 1909, pp. 92–101 (1993)
Finlayson, G.D., Morovic, P.: Error less colour correction. In: ICPR 2004, pp. 181–185. Cambridge (2004)
Finlayson, G.D., Morovic, P.: Intensity constrained error-less colour correction. In: IS&T/SID, pp. 106–110. Scottsdale Ariz (2004)
Pratt W.K.: Digital Image Processing, vol. 2. Wiley, New York (1991)
Sharma, G., Trussell, H.J.: Characterization of scanner sensitivity. In: IS&T/SID, pp. 103–107. Scottsdale Ariz (1993)
Sharma G., Trussell H.J.: Set theoretic estimation in color scanner characterization. J. Electron. Imaging 5, 479–489 (1996)
Finlayson, G.D., Hordley, S., Hubel, P.M.: Recovering device sensitivities with quadratic programming. In: IS&T/SID, pp. 90–95. Scottsdale Ariz (1998)
Sze S.M.: Semiconductor Devices : Physics and Technology. Wiley, New York (1985)
Cohen J.B., Kappauf W.E.: Metameric color stimuli, fundamental metamers, and wyszecki’s metameric blacks. Am. J. Psychol. 95, 537–564 (1982)
Cohen J.B., Kappauf W.E.: Color mixture and fundamental metamers: theory, algebra, geometry, application. Am. J. Psychol. 98, 171–259 (1985)
Wyszecki G., Stiles W.A.: Color Science: concepts and methods, quantitative data and formulae, 2 edn. Wiley, (2000)
Stiles W.A., Wyszecki G., Ohta N.: Counting metameric object-color stimuli using frequency-limited spectral reflectance functions. J. Opt. Soc. Am. 67, 779–784 (1977)
Praefcke W.: Transform coding of reflectance spectra using smooth basis vectors. J. Imaging Sci. Technol. 40, 543–548 (1996)
Urban P., Schleicher D., Rosen M.R., Berns R.S.: Embedding non-euclidean color spaces into euclidean color spaces with minimal isometric disagreement. J. Opt. Soc. Am. A 24(6), 1516–1528 (2007)
Mohammad-Djafari, A.: Bayesian inference for inverse problems in signal and image processing and applications. Int. J. Imaging Syst. Technol. 16(5), 209–214 (2006)
Bertero M., Boccacci P.: Introduction to Inverse Problems in Imaging. Institute of Physics Pub Inc., Philadelphia (1998)
Brainard D.H., Freeman W.T.: Bayesian color constancy. J. Opt. Soc. Am. A 14(7), 1393–1411 (1997)
Attewell D., Baddeley R.J.: The distribution of reflectances within the visual environment. Vis. Res. 47(4), 548–554 (2007)
Ramanath R., Kuehni R.G., Snyder W.E., Hinks D.: Spectral spaces and color spaces. Color Res. Appl. 29, 29–37 (2004)
Nayatani Y.: Why two kinds of color order systems are necessary?. Color Res. Appl. 30, 295–303 (2005)
Kuehni R.G.: The early development of the munsell system. Color Res. Appl. 27, 20–27 (2002)
Romney A.K., Indow T.: Munsell reflectance spectra represented in three-dimensional euclidean space. Color Res. Appl. 28, 182–196 (2003)
Parkkinen J.P.S., Hallikanen J., Jaaskelainen T.: Characteristic spectra of munsell colors. J. Opt. Soc. Am. A 6, 318–322 (1989)
Hsrd A., Sivik L., Tonnquist G.: Ncs, natural color system—from concept to research and applications. Part I. Color Res. Appl. 21, 180–205 (1996)
Hsrd A., Sivik L., Tonnquist G.: Ncs, natural color system—from concept to research and applications. Part II. Color Res. Appl. 21, 206–220 (1996)
Lenz R., Meer P., Hauta-Kasari M.: Spectral based illuminant estimation and color correction. Color Res. Appl. 24, 98–111 (1999)
Vora P.L., Trussell H.J.: Measure of goodness of a set of color-scanning filters. J. Opt. Soc. Am. A 10, 1499–1508 (1993)
Vrhel M.J., Gershon R., Iwan L.S.: Measurement and analysis of object reflectance spectra. Color Res. Appl. 19, 4–9 (1994)
Vrhel M.J., Trussell H.J.: Optimal color filters in the presence of noise. IEEE Trans. Image Process 4, 814–823 (1995)
Pratt W.K.: Digital Image Processing, vol. 1. Wiley, New York (1978)
Sharma, G., Knox, K.T.: Influence of resolution on scanner noise perceptibility. In: PICS: Image Processing, Image Quality, Image Capture, Systems Conference, pp. 137–141. MontrTal, Canada (2001)
NPES: Graphic Technology—Color Reflection Target for Input Scanner Calibration, vol. IT8.7/2-1993. Reston, Virginia (1999)
CIE Publication No. 101: Parametric Effects in Colour Difference Evaluation. CIE Central Bureau, Vienna (1993)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Urban, P., Grigat, RR. Metamer density estimated color correction. SIViP 3, 171–182 (2009). https://doi.org/10.1007/s11760-008-0069-0
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-008-0069-0