Skip to main content
Log in

Metamer density estimated color correction

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Color correction is the transformation of response values of scanners or digital cameras into a device- independent color space. In general, the transformation is not unique due to different acquisition and viewing illuminants and non-satisfaction of the Luther–Ives condition by a majority of devices. In this paper we propose a method that approximates the optimal color correction in the sense of a minimal mean error. The method is based on a representative set of reflectance spectra that is used to calculate a special basic collection of device metameric blacks and an appropriate fundamental metamer for each sensor response. Combining the fundamental metamer and the basic collection results in a set of reflectances that follows the density distribution of metameric reflectances if calculated by Bayesian inference. Transforming only positive and bounded spectra of the set into an observer’s perceptually uniform color space results in a point cloud that follows the density distribution of device metamers within the metamer mismatch space of acqcuisition system and human observer. The mean value of this set is selected for color correction, since this is the point with a minimal mean color distance to all other points in the cloud. We present the results of various simulation experiments considering different acquisition and viewing illuminants, sensor types, noise levels, and existing methods for comparison.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. ICC: File Format for Color Profiles, 4.0.0 edn (2002). http://www.color.org

  2. DIN6176: Farbmetrische bestimmung von farbabstSnden bei körperfarben nach der din99-formel. DIN Deutsches Institut fnr Normung e.V (2000)

  3. Cui G., Luo M.R., Rigg B., Roesler G., Witt K.: Uniform colour spaces based on the din99 colour-difference formula. Color Res. Appl. 27, 282–290 (2001)

    Article  Google Scholar 

  4. Luther R.: Aus dem gebiet der farbreizmetrik. Z. Tech. Phys. 8, 540–558 (1927)

    Google Scholar 

  5. Ives H.E.: The transformation of color-mixture equations from one system to another. J. Franklin Inst. 16, 673–701 (1915)

    Article  Google Scholar 

  6. Urban P., Grigat R.-R.: The metamer boundary descriptor method for color correction. J. Imaging Sci. Technol. 49, 417–429 (2005)

    Google Scholar 

  7. Hardeberg, J.Y.: Acquisition and reproduction of colour images: colorimetric and multispectral approaches. PhD Thesis, Ecole Nationale SupTrieure des TTlTcommunications, France (1999)

  8. Sharma G.: Digital Color Imaging Handbook 1 edition. CRC PRESS, USA (2003)

    Google Scholar 

  9. Berns R.S.: Billmeyer and Saltzman’s: Principles of Color Technology, 3 edn. Wiley, New York (2000)

    Google Scholar 

  10. König, F.: Die Charakterisierung von Farbsensoren. PhD Thesis, Rheinisch-WestfSlische Technische Hochschule Aachen, Germany (2001)

  11. Urban, P.: Metamere und multispektrale Methoden zur Reproduktion farbiger Vorlagen. PhD Thesis, Technische UniversitSt Hamburg-Harburg, Germany (2005). BoD, ISBN 3833426659

  12. Vrhel, M.J., Trussell, H.J.: Color scanner calibration via a neural network. In: Proceedings of IEEE ICASSP-99, vol. 6, pp. 3465–3468, Phoenix, Arizona (1999)

  13. Hung, P.-C.: Colorimetric calibration for scanners and media. In: Proceedings of SPIE, vol. 1448, pp. 164–174, San Jose (1991)

  14. Finlayson G.D., Drew M.S.: Constrained least-squares regression in color spaces. J. Electron. Imaging 6, 484–493 (1997)

    Article  Google Scholar 

  15. Li, C., Luo, M.R.: A novel approach for generating object spectral reflectance functions from digital cameras. In: IS&T/SID, pp. 99–103. Scottsdale Ariz (2005)

  16. Sharma G.: Targetless scanner color calibration. J. Imaging Sci. Technol. 44, 301–307 (2000)

    Google Scholar 

  17. Sharma G.: Set theoretic estimation for problems in subtractive color. Color Res. Appl. 25, 333–348 (2000)

    Article  Google Scholar 

  18. Shi M., Healey G.: Using reflectance models for color scanner calibration. J. Opt. Soc. Am. A 19, 645–656 (2002)

    Article  Google Scholar 

  19. Shen H.L., Xin J.H.: Spectral characterization of a color scanner by adaptive estimation. J. Opt. Soc. Am. A 21(7), 1125–1130 (2004)

    Article  Google Scholar 

  20. Morovic, P.M., Finlayson, G.D.: Reflectance estimation with uncertainty. In: AIC Colour 05, pp. 507–510. Granada, Spain (2005)

  21. Zhang, X., Brainard, D.H.: Bayesian color correction method for non-colorimetric digital image sensors. In: IS&T/SID, pp. 308–314. Scottsdale Ariz (2004)

  22. Imai, F.H., Berns, R.S.: Spectral estimation using trichromatic digital cameras. In: International Symposium on Multispectral Imaging and Color Reproduction for Digital Archives, pp. 42–49, Chiba University, Chiba (1999)

  23. Finlayson G.D., Morovic P.M.: Metamer constrained color correction. J. Imaging Sci. Technol. 44, 295–300 (2000)

    Google Scholar 

  24. Drew, M.S., Funt, B.V.: Natural metamers. In: CVGIP: Image Understanding, pp. 139–151 (1992)

  25. Wandell, B.A., Farrell, J.E.: Water into wine: Converting scanner rgb to tristimulus xyz. In: SPIE: Device-Independent Color Imaging and Imaging Systems Integration, vol. 1909, pp. 92–101 (1993)

  26. Finlayson, G.D., Morovic, P.: Error less colour correction. In: ICPR 2004, pp. 181–185. Cambridge (2004)

  27. Finlayson, G.D., Morovic, P.: Intensity constrained error-less colour correction. In: IS&T/SID, pp. 106–110. Scottsdale Ariz (2004)

  28. Pratt W.K.: Digital Image Processing, vol. 2. Wiley, New York (1991)

    Google Scholar 

  29. Sharma, G., Trussell, H.J.: Characterization of scanner sensitivity. In: IS&T/SID, pp. 103–107. Scottsdale Ariz (1993)

  30. Sharma G., Trussell H.J.: Set theoretic estimation in color scanner characterization. J. Electron. Imaging 5, 479–489 (1996)

    Article  Google Scholar 

  31. Finlayson, G.D., Hordley, S., Hubel, P.M.: Recovering device sensitivities with quadratic programming. In: IS&T/SID, pp. 90–95. Scottsdale Ariz (1998)

  32. Sze S.M.: Semiconductor Devices : Physics and Technology. Wiley, New York (1985)

    Google Scholar 

  33. Cohen J.B., Kappauf W.E.: Metameric color stimuli, fundamental metamers, and wyszecki’s metameric blacks. Am. J. Psychol. 95, 537–564 (1982)

    Article  Google Scholar 

  34. Cohen J.B., Kappauf W.E.: Color mixture and fundamental metamers: theory, algebra, geometry, application. Am. J. Psychol. 98, 171–259 (1985)

    Article  Google Scholar 

  35. Wyszecki G., Stiles W.A.: Color Science: concepts and methods, quantitative data and formulae, 2 edn. Wiley, (2000)

  36. Stiles W.A., Wyszecki G., Ohta N.: Counting metameric object-color stimuli using frequency-limited spectral reflectance functions. J. Opt. Soc. Am. 67, 779–784 (1977)

    Article  Google Scholar 

  37. Praefcke W.: Transform coding of reflectance spectra using smooth basis vectors. J. Imaging Sci. Technol. 40, 543–548 (1996)

    Google Scholar 

  38. Urban P., Schleicher D., Rosen M.R., Berns R.S.: Embedding non-euclidean color spaces into euclidean color spaces with minimal isometric disagreement. J. Opt. Soc. Am. A 24(6), 1516–1528 (2007)

    Article  Google Scholar 

  39. Mohammad-Djafari, A.: Bayesian inference for inverse problems in signal and image processing and applications. Int. J. Imaging Syst. Technol. 16(5), 209–214 (2006)

    Article  Google Scholar 

  40. Bertero M., Boccacci P.: Introduction to Inverse Problems in Imaging. Institute of Physics Pub Inc., Philadelphia (1998)

    Book  MATH  Google Scholar 

  41. Brainard D.H., Freeman W.T.: Bayesian color constancy. J. Opt. Soc. Am. A 14(7), 1393–1411 (1997)

    Article  Google Scholar 

  42. Attewell D., Baddeley R.J.: The distribution of reflectances within the visual environment. Vis. Res. 47(4), 548–554 (2007)

    Article  Google Scholar 

  43. Ramanath R., Kuehni R.G., Snyder W.E., Hinks D.: Spectral spaces and color spaces. Color Res. Appl. 29, 29–37 (2004)

    Article  Google Scholar 

  44. Nayatani Y.: Why two kinds of color order systems are necessary?. Color Res. Appl. 30, 295–303 (2005)

    Article  Google Scholar 

  45. Kuehni R.G.: The early development of the munsell system. Color Res. Appl. 27, 20–27 (2002)

    Article  Google Scholar 

  46. Romney A.K., Indow T.: Munsell reflectance spectra represented in three-dimensional euclidean space. Color Res. Appl. 28, 182–196 (2003)

    Article  Google Scholar 

  47. Parkkinen J.P.S., Hallikanen J., Jaaskelainen T.: Characteristic spectra of munsell colors. J. Opt. Soc. Am. A 6, 318–322 (1989)

    Article  Google Scholar 

  48. Hsrd A., Sivik L., Tonnquist G.: Ncs, natural color system—from concept to research and applications. Part I. Color Res. Appl. 21, 180–205 (1996)

    Article  Google Scholar 

  49. Hsrd A., Sivik L., Tonnquist G.: Ncs, natural color system—from concept to research and applications. Part II. Color Res. Appl. 21, 206–220 (1996)

    Article  Google Scholar 

  50. Lenz R., Meer P., Hauta-Kasari M.: Spectral based illuminant estimation and color correction. Color Res. Appl. 24, 98–111 (1999)

    Article  Google Scholar 

  51. Vora P.L., Trussell H.J.: Measure of goodness of a set of color-scanning filters. J. Opt. Soc. Am. A 10, 1499–1508 (1993)

    Article  Google Scholar 

  52. Vrhel M.J., Gershon R., Iwan L.S.: Measurement and analysis of object reflectance spectra. Color Res. Appl. 19, 4–9 (1994)

    Google Scholar 

  53. Vrhel M.J., Trussell H.J.: Optimal color filters in the presence of noise. IEEE Trans. Image Process 4, 814–823 (1995)

    Article  Google Scholar 

  54. Pratt W.K.: Digital Image Processing, vol. 1. Wiley, New York (1978)

    Google Scholar 

  55. Sharma, G., Knox, K.T.: Influence of resolution on scanner noise perceptibility. In: PICS: Image Processing, Image Quality, Image Capture, Systems Conference, pp. 137–141. MontrTal, Canada (2001)

  56. NPES: Graphic Technology—Color Reflection Target for Input Scanner Calibration, vol. IT8.7/2-1993. Reston, Virginia (1999)

  57. CIE Publication No. 101: Parametric Effects in Colour Difference Evaluation. CIE Central Bureau, Vienna (1993)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Philipp Urban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urban, P., Grigat, RR. Metamer density estimated color correction. SIViP 3, 171–182 (2009). https://doi.org/10.1007/s11760-008-0069-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-008-0069-0

Keywords