Skip to main content
Log in

Comparison of ICA approaches for facial expression recognition

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Independent component analysis (ICA) and Gabor wavelets extract the most discriminating features for facial action unit classification by employing either a cosine similarity measure (CSM) classifier or support vector machines (SVMs). So far, only the ICA approach, which is based on the InfoMax principle, has been tested for facial expression recognition. In this paper, in addition to the InfoMax approach, another five ICA approaches extract features from two facial expression databases. In particular, the Extended InfoMax ICA, the undercomplete ICA, and the nonlinear kernel-ICA approaches are exploited for facial expression representation for the first time. When applied to images, ICA treats the images as being mixtures of independent sources and decomposes them into an independent basis and the corresponding mixture coefficients. Two architectures for representing the images can be employed yielding either independent and sparse basis images or independent and sparse distributions of image representation coefficients. After feature extraction, facial expression classification is performed with the help of either a CSM classifier or an SVM classifier. A detailed comparative study is made with respect to the accuracy offered by each classifier. The correlation between the accuracy and the mutual information of independent components or the kurtosis is evaluated. Statistically significant correlations between the aforementioned quantities are identified. Several issues are addressed in the paper: (i) whether features having super- and sub-Gaussian distribution facilitate facial expression classification; (ii) whether a nonlinear mixture of independent sources improves the classification accuracy; and (iii) whether an increased “amount” of sparseness yields more accurate facial expression recognition. In addition, performance enhancements by employing leave-one-set of expressions-out and subspace selection are studied. Statistically significant differences in accuracy between classifiers using several feature extraction methods are also indicated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Susskind J.M., Littlewort G., Bartlett M.S., Movellan J., Anderson A.K.: Human and computer recognition of facial expressions of emotion. Neuropsychologia. 45(1), 52–162 (2007)

    Article  Google Scholar 

  2. Pantic M., Rothkrantz L.J.M.: Automatic analysis of facial expressions: The state-of-the-art. IEEE Trans. Pattern Anal. Mach. Intell. 22(12), 1424–1445 (2000)

    Article  Google Scholar 

  3. Pantic M., Rothkrantz L.J.M.: Facial action recognition for facial expression analysis from static face images. IEEE Trans Syst Man Cybern B 34(3), 1449–1461 (2004)

    Article  Google Scholar 

  4. Fasel B., Luettin J.: Automatic Facial Expression Analysis: a survey. Pattern Recognit 1(30), 259–275 (2003)

    Article  Google Scholar 

  5. Zhang, Z., Lyons, M., Schuster, M., Akamatsu, S.: Comparison between geometry-based and Gabor-wavelets-based facial expression recognition using multi-layer perceptron. In: Proceedings of the third IEEE International Conference on Automatic Face and Gesture Recognition, 14–16 April 1998, Nara Japan, pp. 454–459 (1998)

  6. Wiskott L., Fellous J.-M., Kruger N., von der Malsburg C.: Face recognition by elastic bunch graph matching. IEEE Trans. Pattern Anal. Mach. Intell. 19(7), 775–779 (1997)

    Article  Google Scholar 

  7. Tian, Y.-L., Kanade, T., Cohn, J.: Evaluation of Gabor-wavelet-based facial action unit recognition in image sequences of increasing complexity. In: Proceedings of the Fifth IEEE International Conference Automatic Face and Gesture Recognition, May, pp. 229–234 (2002)

  8. Tian Y.-L., Kanade T., Cohn J.: Recognizing action units for facial expression analysis. IEEE Trans. Pattern Anal. Mach. Intell. 23(2), 97–115 (2001)

    Article  Google Scholar 

  9. Littlewort G., Bartlett M., Fasel I., Susskind J., Movellan J.: Dynamics of facial expression extracted automatically from video. Image Vis. Comput. 24(6), 615–625 (2006)

    Article  Google Scholar 

  10. Donato G., Bartlett M.S., Hager J.C., Ekman P., Sejnowski T.J.: Classifying facial actions. IEEE Trans. Pattern Anal. Mach. Intell. 21(10), 974–989 (1999)

    Article  Google Scholar 

  11. Kim J., Choi J., Yi J., Turk M.: Effective representation using ICA for face recognition robust to local distortion and partial occlusion. IEEE Trans. Pattern Anal. Mach. Intell. 27(12), 1977–1981 (2005)

    Article  Google Scholar 

  12. Draper, B.A., Baek, K., Bartlett, M.S., Beveridge, J.R.: Recognizing faces with PCA and ICA, Computer Vision and Image Understanding, vol. 91: Special issue on Face Recognition, pp. 115–137 (2003)

  13. Moghaddam, B.: Principal manifolds and Bayesian subspaces for visual recognition. In: International Conference on Computer Vision (ICCV’ 99), pp. 1131–1136 (1999)

  14. Guo G., Dyer C.R.: Learning from examples in the small sample, case: Face expression recognition. IEEE Trans. Syst. Man Cybern. B. 35(3), 477–488 (2005)

    Article  Google Scholar 

  15. Bell A.J., Sejnowski T.J.: An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7(6), 1129–1159 (1995)

    Article  Google Scholar 

  16. Lee T.-W., Girolami M., Sejnowski T.J.: Independent component analysis using an extended Infomax algorithm for mixed sub-Gaussian and super-Gaussian sources. Neural Comput. 11(2), 417–441 (1999)

    Article  Google Scholar 

  17. Cardoso J.F., Souloumiac A.: Blind beamforming for non Gaussian signals. IEE Proc F 140(6), 362–370 (1993)

    Google Scholar 

  18. Hyvarinen A.: Fast and robust fixed-point algorithms for independent component analysis. IEEE Trans. Neural Netw. 10(3), 626–634 (1999)

    Article  Google Scholar 

  19. Stone, J.V., Porrill, J.: Undercomplete independent component analysis for signal separation and dimension reduction, Technical Report (1998)

  20. Bach F.R., Jordan M.J.: Kernel independent component analysis. Mach. Learn. Res. 3, 1–48 (2002)

    Article  MathSciNet  Google Scholar 

  21. Friedman J.H.: Exploratory projection pursuit. J. Am. Stat. Assoc. 82(397), 249–266 (1987)

    Article  MATH  Google Scholar 

  22. Hyvarinen A., Karhunen J., Oja E.: Independent Component Analysis. Wiley, NY (2001)

    Book  Google Scholar 

  23. McKeown M., Makeig S., Brown G., Jung T., Kindermann S., Sejnowski T.: Spatially independent activity patterns in functional magnetic resonance imaging during the stroop color-naming task. Proc. Nat. Acad. Sci. 95, 803–810 (1998)

    Article  Google Scholar 

  24. Bartlett M.S., Movellan J.R., Sejnowski T.K.: Face recognition by independent component analysis. IEEE Trans. Neural Netw. 13(6), 1450–1464 (2002)

    Article  Google Scholar 

  25. Vicente M.A., Hoyer P.O., Hyvärinen A.: Equivalence of some common linear feature extraction techniques for appearance-based object recognition tasks. IEEE Trans. Pattern Anal. Mach. Intell. 29(5), 896–900 (2007)

    Article  Google Scholar 

  26. Kanade, T., Cohn, J., Tian, Y.: Comprehensive database for facial expression analysis. In: Proceedings of the Fourth IEEE International Conference Face and Gesture Recognition, pp. 46–53, March, 2000

  27. Pantic M., Rothkrantz L.J.M.: Expert system for automatic analysis of facial expressions. Image Vis. Comput. 18(11), 881–905 (2000)

    Article  Google Scholar 

  28. Lyons, M.J., Akamatsu, S., Kamachi, M., Gyoba, J.: Coding facial expressions with Gabor wavelets. In: Proceedings of the Third IEEE International Conference on Automatic Face and Gesture Recognition, pp. 200–205 (1998)

  29. Vapnik V.: The Nature of Statistical Learning Theory. Springer, Berlin (1995)

    MATH  Google Scholar 

  30. Platt J.C.: Fast training of support vector machines using sequential minimal optimization. Adv. Kernel Methods Support Vector Learn. 12, 185–208 (1999)

    Google Scholar 

  31. Platt J.C., Cristianini N., Taylor J.S.: Large margin DAGs for mutliclass classification. Adv. Neural Inf. Process. Syst. 12, 547–553 (2000)

    Google Scholar 

  32. Guyon I., Makhoul J., Schwartz R., Vapnik V.: What size test set gives good error rate estimates?. IEEE Trans. Pattern Anal. Mach. Intell. 20(1), 52–64 (1998)

    Article  Google Scholar 

  33. Landgrebe T.C.W., Duin R.P.W.: Efficient Multiclass ROC Approximation by Decomposition via Confusion Matrix Perturbation Analysis. IEEE Trans. Pattern Anal. Mach. Intell. 30(5), 810–822 (2008)

    Article  Google Scholar 

  34. Kwak, N., Choi, C.-H., Ahuja, N.: Face recognition using feature extraction based on independent component analysis. In: Proceedings of the 2002 IEEE Inernational Conference on Image Processing, pp. 337–340 (2002)

  35. Petrov Y., Li Z.: Local correlations, information redundancy, and the sufficient pixel depth in natural images. J. Opt. Soc. Am A 20(1), 56–66 (2003)

    Article  Google Scholar 

  36. Donoho, D.L.: Sparse component of images and optimal atomic decomposition, Tech. Rep. Dept, Statistics, Stanford University (1998)

  37. Lee D.D., Seung H.S.: Learning the parts of the objects by non-negative matrix factorization. Nature 401, 788–791 (1999)

    Article  Google Scholar 

  38. Li, S.Z., Hou, X.W., Zhang, H.J.: Learning spatially localized, parts-based representation. In: International Conference of Computer Vision and Pattern Recognition, pp. 207–212, (2001)

  39. Buciu, I., Kotropoulos, C., Pitas, I.: ICA and Gabor representation for facial expression recognition. In: Proceedings of 2003 IEEE International Conference on Image Processing, pp. 855–858 (2003)

  40. Brady N., Field D.J.: Local contrast in natural images: normaliation and coding efficiency. Perception 29(9), 1041–1055 (2000)

    Article  Google Scholar 

  41. Wainwright M., Schwartz O., Simoncelli E.: Natural image statistics and divisive normalization: modeling nonlinearity and adaptation in cortical neurons. In: Rao, R., Olshausen, B., Lewicki, M. (eds) Statistical Theories of the Brain: Perception and Neural Function, MIT Press, Cambridge (2002)

    Google Scholar 

  42. Yang, J., Zhang, D., Yang, J.-y.: Is ICA Significantly Better than PCA for Face Recognition? In: Proceedings of the 10th IEEE International Conference on Computer Vision, vol. 1, pp. 198–103 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. Buciu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buciu, I., Kotropoulos, C. & Pitas, I. Comparison of ICA approaches for facial expression recognition. SIViP 3, 345–361 (2009). https://doi.org/10.1007/s11760-008-0074-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-008-0074-3

Keywords

Navigation