Skip to main content
Log in

Invariant gait continuum based on the duty-factor

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we present a method to describe the continuum of human gait in an invariant manner. The gait description is based on the duty-factor which is adopted from the biomechanics literature. We generate a database of artificial silhouettes representing the three main types of gait, i.e. walking, jogging, and running. By generating silhouettes from different camera angles we make the method invariant to camera viewpoint and to changing directions of movement. Silhouettes are extracted using the Codebook method and represented in a scale- and translation-invariant manner by using shape contexts and tangent orientations. Input silhouettes are matched to the database using the Hungarian method. We define a classifier based on the dissimilarity between the input silhouettes and the gait actions of the database. This classification achieves an overall recognition rate of 87.1% on a diverse test set, which is better than that achieved by other approaches applied to similar data. We extend this classification and results show that our representation of the gait continuum preserves the main features of the duty-factor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexander R.: Optimization and gaits in the locomotion of vertebrates. Physiol. Rev. 69(4), 1199–1227 (1989)

    Google Scholar 

  2. Alexander R.: Energetics and optimization of human walking and running: the 2000 Raymond Pearl Memorial Lecture. Am. J. Hum. Biol. 14(5), 641–648 (2002)

    Article  Google Scholar 

  3. Belongie S., Malik J., Puzicha J.: Shape matching and object recognition using shape contexts. PAMI 24(4), 509–522 (2002)

    Google Scholar 

  4. Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri, R.: Actions as space-time shapes. In: ICCV (2005)

  5. Collins, R., Gross, R., Shi, J.: Silhouette-based human identification from body shape and gait. In: FGR (2002)

  6. Cutler R., Davis L.S.: Robust real-time periodic motion detection, analysis, and applications. PAMI 22(8), 781–796 (2000)

    Google Scholar 

  7. Dollár, P., Rabaud, V., Cottrell, G., Belongie, S.: Behavior Recognition via Sparse Spatio-Temporal Features. In: VS-PETS (2005)

  8. Fihl, P., Corlin, R., Park, S., Moeslund, T., Trivedi, M.: Tracking of individuals in very long video sequences. In: Int. Symposium on Visual Computing. Lake Tahoe, Nevada, USA (2006)

  9. Jiang, H., Drew, M.S., Li, Z.N.: Successive convex matching for action detection. In: CVPR (2006)

  10. Kim K., Chalidabhongse T., Harwood D., Davis L.: Real-time foreground–background segmentation using codebook model. Real-time Imaging 11(3), 172–185 (2005)

    Article  Google Scholar 

  11. Laptev, I., Marszalek, M., Schmid, C., Rozenfeld, B.: Learning realistic human actions from movies. In: CVPR. Alaska, USA (2008)

  12. Liu, Z., Malave, L., Osuntugun, A., Sudhakar, P., Sarkar, S.: Towards Understanding the limits of gait recognition. In: Int. Symposium on Defense and Security. Orlando, Florida, USA (2004)

  13. Liu Z., Sarkar S.: Improved gait recognition by gait dynamics normalization. PAMI 28(6), 863–876 (2006)

    Google Scholar 

  14. Masoud O., Papanikolopoulos N.: A method for human action recognition. Image Vis. Comput. 21(8), 729–743 (2003)

    Article  Google Scholar 

  15. Niebles, J.C., Wang, H., Fei-Fei, L.: Unsupervised learning of human action categories using spatial-temporal words. In: BMVC (2006)

  16. Papadimitriou C., Steiglitz K.: Combinatorial Optimization: Algorithms and Complexity. Courier Dover Publications, Mineola, NY, USA (1998)

    MATH  Google Scholar 

  17. Patron, A., Reid, I.: A probabilistic framework for recognizing similar actions using spatio-temporal features. In: BMVC (2007)

  18. Ran Y., Weiss I., Zheng Q., Davis L.S.: Pedestrian detection via periodic motion analysis. IJCV 71(2), 143–160 (2007)

    Article  Google Scholar 

  19. Robertson, N., Reid, I.: Behaviour understanding in video: a combined method. In: ICCV (2005)

  20. Schüldt, C., Laptev, I., Caputo, B.: Recognizing human actions: a local SVM approach. In: ICPR (2004)

  21. Tenenbaum J., Silva V., Langford J.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319–2323 (2000)

    Article  Google Scholar 

  22. CMU Graphics Lab Motion Capture Database (2007). http://mocap.cs.cmu.edu/

  23. Poser (ver. 6.0.3.140) (2007). http://www.e-frontier.com/go/poser/

  24. Troje N.F.: Decomposing biological motion: a framework for analysis and synthesis of human gait patterns. J. Vis. 2(5), 371–387 (2002)

    Article  Google Scholar 

  25. Veeraraghavan A., Roy-Chowdhury A., Chellappa R.: Matching shape sequences in video with applications in human movement analysis. PAMI 27(12), 1896–1909 (2005)

    Google Scholar 

  26. Viola P., Jones M.J., Snow D.: Detecting pedestrians using patterns of motion and appearance. IJCV 63(2), 153–161 (2005)

    Article  Google Scholar 

  27. Wang L., Tan T.N., Ning H.Z., Hu W.M.: Fusion of static and dynamic body biometrics for gait recognition. IEEE Trans. Circuits Syst. Video Technol. 14(2), 149–158 (2004)

    Article  Google Scholar 

  28. Whittle M.W.: Gait Analysis: An Introduction. Butterworth-Heinemann Ltd., London (2001)

    Google Scholar 

  29. Wong, S.F., Cipolla, R.: Extracting spatiotemporal interest points using global information. In: ICCV. Rio de Janeiro, Brazil (2007)

  30. Yam, C., Nixon, M., Carter, J.: On the relationship of human walking and running: automatic person identification by gait. In: ICPR (2002)

  31. Yang, H.D., Park, A.Y., Lee, S.W.: Human–robot interaction by whole body gesture spotting and recognition. In: ICPR (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Preben Fihl.

Additional information

This work is supported by the EU project HERMES (FP6 IST-027110).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fihl, P., Moeslund, T.B. Invariant gait continuum based on the duty-factor. SIViP 3, 391–402 (2009). https://doi.org/10.1007/s11760-008-0089-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-008-0089-9

Keywords

Navigation