Skip to main content
Log in

Detection of quadratic phase coupling from human EEG signals using higher order statistics and spectra

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Interactions among neural signals in different frequency components have become a focus of strong interest in biomedical signal processing. The bispectrum is a method to detect the presence of quadratic phase coupling (QPC) between different frequency bands in a signal. The traditional way to quantify phase coupling is by means of the bicoherence index (BCI), which is essentially a normalized bispectrum. The main disadvantage of the BCI is that the determination of significant QPC becomes compromised with noise. To mitigate this problem, a statistical approach that combines the bispectrum with an improved surrogate data method to determine the statistical significance of the phase coupling is introduced. The method was first tested on two simulation examples. It was then applied to the human EEG signal that has been recorded from the scalp using international 10–20 electrodes system. The frequency domain method, based on normalized spectrum and bispectrum, describes frequency interactions associated with nonlinearities occurring in the observed EEG.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Basar, E.: Chaos in brain function. In: Basar, E. (ed.). Springer, Berlin (1990)

  2. Pfurtscheller G., Stancak A. Jr., Edlinger G.: On the existence of different types of central beta rhythms below 30 Hz. Electroencephalogr. Clin. Neurophysiol. 102, 316–325 (1997)

    Article  Google Scholar 

  3. Huang L., Wang Y., Liu J., Wang J.: Evaluation of ischemic states using bispectrum parameters of EEG and neural networks. Proc. Conf. IEEE Eng. Med. Biol. Soc. 1, 582–585 (2004)

    Google Scholar 

  4. Schwab K., Eiselt M., Schelenz C., Witte H.: Time-variant parametric estimation of transient quadratic phase couplings during electroencephalographic burst activity. Methods Inf. Med. 44, 374–383 (2005)

    Google Scholar 

  5. Schack B., Vath N., Petsche H., Geissler H.G., Moller E.: Phase- coupling of theta-gamma EEG rhythms during short-term memory processing. Int. J. Psychophysiol. 44, 143–163 (2002)

    Article  Google Scholar 

  6. Raghavan R., Chen X., Yip K.P., Marsh D.J., Chon K.H.: Interactions between TGF-dependent and myogenic oscillations in tubular pressure and whole kidney blood flow in both SDR and SHR. Am. J. Physiol. Renal. Physiol. 290, F720–F732 (2006)

    Article  Google Scholar 

  7. Chon K.H., Rahavan R., Chen Y.M., Marsh D.J., Yip K.P.: Interactions of TGF-dependent and myogenic oscillations in tubular pressure. Am. J. Physiol. Renal. Physiol. 288, F298–F307 (2005)

    Article  Google Scholar 

  8. Jamsek J., Stefanovska A., McClintock P.V.: Nonlinear cardio-respiratory interactions revealed by time-phase bispectral analysis. Phys. Med. Biol. 49, 4407–4425 (2004)

    Article  Google Scholar 

  9. Al-Fahoum A., Khadra L.: Combined bispectral and bicoherency approach for catastrophic arrhythmia classification. Proc. Conf. IEEE Eng. Med. Biol. Soc. 1, 332–336 (2005)

    Google Scholar 

  10. Palva J.M., Palva S., Kaila K.: Phase synchrony among neuronal oscillations in the human cortex. J. Neurosci. 25, 3962–3972 (2005)

    Article  Google Scholar 

  11. Tass P., Rosenblum M.G., Weule J., Kurths J., Pikovsky A., Volkmann J., Schnitzler A., Freund H.J.: Detection of n:m phase locking from noisy data: application to magneto encephalography. Phys. Rev. Lett. 81, 3291–3294 (1998)

    Article  Google Scholar 

  12. Canolty R.T., Edwards E., Dalal S.S., Soltani M., Nagarajan S.S., Kirsch H.E., Berger M.S., Barbaro N.M., Knight R.T.: High gamma power is phase-locked to theta oscillations in human neocortex. Science 313, 1626–1628 (2006)

    Article  Google Scholar 

  13. Dumermut G., Huber P.J., Kleiner B., Gasser T.: Analysis of interrelations between frequency bands of EEG by means of bispectrum—preliminary study. Electroencephal. Clin. Neurophys. 31, 137–148 (1971)

    Article  Google Scholar 

  14. Zhou G.T., Giannakis G.N.: Retrieval of self-coupled harmonics. IEEE Trans. Signal Process 43(5), 1173–1186 (1995)

    Article  MATH  Google Scholar 

  15. Shils J.L., Litt M., Skolnick B.E., Stecker M.M.: Bispectral analysis of visual interactions in humans. Electroencephal. Clin. Neurophys. 98, 113–125 (1996)

    Article  Google Scholar 

  16. Nikias C.L., Raghuveer M.R.: Bispectrum estimation: a digital signal processing framework. Proc. IEEE 75, 869–891 (1987)

    Article  Google Scholar 

  17. Raghuveer M.R., Nikias C.L.: Bispectrum estimation: a parametric approach. IEEE Trans. Acous. Speech. Signal Process. ASSP. 33(4), 1213–1230 (1985)

    Article  Google Scholar 

  18. Elgar S., Guza R.T.: Statistics of bicoherence. IEEE Trans. Acoust. Speech Signal Process 36(10), 1667–1668 (1988)

    Article  MATH  Google Scholar 

  19. Pinhas I., Toledo E., Aravot D., Akselrod S.: Bicoherence analysis of new cardiovascular spectral components observed in heart-transplant patients: statistical approach for bicoherence thresholding. IEEE Trans. Biomed. Eng. 51(10), 1774–1783 (2004)

    Article  Google Scholar 

  20. L. Siu, Jae M. Ahn, Kihwan Ju, Myoungho Lee, Kunsoo shin, Ki H. Chon.: Statistical Approach to quantify the presence of phase coupling using the bispectrum. IEEE Trans. Biomed. Eng. 55(5), 1512–1520 (2008)

    Article  Google Scholar 

  21. Nikias C.L., Petropulu P.A.: Higher-order spectra analysis: a nonlinear signal processing framework. Prentice-Hall, Englewood Cliffs (1993)

    MATH  Google Scholar 

  22. Wang X., Krishnamurthy S., Evans J., Bhakta D., Justice L., Bruce E., Patwardhan A.: Bispectral analysis as a tool to investigate dynamics of cardio respiratory physiology. Aviat. Space Environ. Med. 77, 151–156 (2006)

    Google Scholar 

  23. Sasaki K., Sato T., Yamashita Y.: Minimum bias windows for bispectral estimation. J. Sound Vib. 40(1), 139–148 (1975)

    Article  MATH  Google Scholar 

  24. Vanness J.W.: Asymptotic normality of bispectral estimates. Ann. Math. Stat. 37, 1257 (1966)

    Article  MathSciNet  Google Scholar 

  25. Haubrich R.: Earth noises 5 to 500 millicycles per second. J. Geophys. Res. 70, 1415–1427 (1965)

    Article  Google Scholar 

  26. Wang X., Chen Y., Ding M.: Testing for statistical significance in Bispectra: a surrogate data approach and application to neuroscience. IEEE Trans. Biomed. Eng. 54(11), 1974–1982 (2007)

    Article  Google Scholar 

  27. Schreiber T., Schmitz A.: Improved surrogate data for nonlinearity test. Phy. Rev Lett. 77(4), 635–638 (1996)

    Article  Google Scholar 

  28. Doornik, J.A.: An improved Ziggurat method to generate normal random samples. University of Oxford, UK (2005)

  29. Timmer, J.: On surrogate data testing for linearity based on the periodogram. eprint arXiv: comp-gas/9509003, 1995

  30. Evans M., Hastings N., Peacock B.: Statistical distributions, 2nd ed. Wiley, New York (1993)

    MATH  Google Scholar 

  31. Hinch M.J.: Testing for gaussianity and linearity of a stationary time series. J. Time Ser. Anal. 3, 169–176 (1982)

    Article  MathSciNet  Google Scholar 

  32. Patterson D.M., Ashley R.A.: A nonlinear time series workshop: a toolkit for detecting and identifying nonlinear serial dependence. Kluwer, Norwell (2000)

    MATH  Google Scholar 

  33. Hinich, M., Mendes, E., Stone, L.: Detecting nonlinearity in time series: surrogate and bootstrap approaches. Studies Nonlinear Dyn. Economet, 9, 2005

  34. Schreiber T., Schmitz A.: Discrimination power of measures for nonlinearity in a time series. Phys. Rev. E 55, 5443–5447 (1997)

    Article  Google Scholar 

  35. Kim Y., Powers E.: Digital bispectral analysis and its application to nonlinear wave interactions. IEEE Trans. Plasma Sci. PS-1, 120–131 (1979)

    Article  Google Scholar 

  36. Schanze T., Eckhorn R.: Phase correlation among rhythms present at different frequencies: spectral methods, application to microelectrode recordings from visual cortex and functional implications. Int. J. Psychophys. 26, 171–189 (1997)

    Article  Google Scholar 

  37. Schwilden H., Jeleazcov C.: Does the EEG during isoflurane/alfentanil anesthesia differ from linear random data?. J. Clin. Monit. Comput. 17, 449–457 (2002)

    Article  Google Scholar 

  38. Venema V., Bachner S., Rust H.W., Simmer C.: Statistical characteristics of surrogate data based on geophysical measurements. Nonlinear Processes Geophys. 13, 449–466 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Venkatakrishnan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Venkatakrishnan, P., Sukanesh, R. & Sangeetha, S. Detection of quadratic phase coupling from human EEG signals using higher order statistics and spectra. SIViP 5, 217–229 (2011). https://doi.org/10.1007/s11760-010-0156-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-010-0156-x

Keywords

Navigation