Skip to main content
Log in

PSO-based learning of sub-band adaptive thresholding function for image denoising

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, a new computationally efficient approach has been proposed for denoising the images which are corrupted by Gaussian noise. In this approach, relatively recent category of stochastic global optimization technique i.e., particle swarm optimization (PSO) technique have been proposed for learning the parameters of adaptive thresholding function required for optimum performance. The proposed PSO-based denoising approach not only speeds up the optimization but also improves the performance in comparison with wavelet transform-based thresholding neural network (WT-TNN) approach. The results obtained shows better edge preservation performance with bior6.8 wavelet filter when compared to db8 wavelet filter. Further, problem of dependency of learning time on initial value of thresholding parameters and noise level in the image have been sorted out in the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gonzalez R.C., Woods R.E.: Digital Image Processing. 2nd edn. Pearson Prentice-Hall, Singapore (2002)

    Google Scholar 

  2. Mallat G.: Theory for multiresolution signal decomposition: the wavelet representation. IEEE Trans. Pattern Anal. Mach. Intell. 2(7), 674–694 (1989)

    Article  Google Scholar 

  3. Donoho D.L., Johnstone I.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  4. Donoho D.L., Johnstone I.M.: Adapting to unknown smoothness via wavelet shrinkage. J. Am. Stat. Assoc. 90(432), 1200–1224 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  5. Donoho D.L.: Denoising by soft thresholding. IEEE Trans. Inf. Theory 41, 613–627 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  6. Gao H., Bruce A.G.: WaveShrink with firm shrinkage. Stat. Sin. 7, 855–874 (1997)

    MATH  MathSciNet  Google Scholar 

  7. Gao H.: Wavelet shrinkage denoising using the nonnegative garrote. J. Comput. Graph. Stat. 7, 469–488 (1998)

    Article  Google Scholar 

  8. Fodor, I.K., Kamath, C.: Denoising Through Wavelet shrinkage: An empirical Study. SPIE J. Electron. Imaging, 12(151) (2003)

  9. Achim A., Bezerianos A., Tsakalides P.: Novel Bayesian multiscale method for speckle removal in medical ultrasound Images. IEEE Trans. Med. Imaging 20(8), 772–783 (2001)

    Article  Google Scholar 

  10. Achim A., Kuruoghlu E.: Image denoising using alpha-stable distributions in the complex wavelet domain. IEEE Signal Process. Lett. 12(1), 17–20 (2005)

    Article  Google Scholar 

  11. Mohamad, M., Hamid, M.: Ultrasound speckle suppression using heavy tailed distribution in the dual tree complex wavelet domain. In: IEEE Conference Proceeding on Wavelet Diversity and Design, pp. 65–68 (2007)

  12. Gupta S., Chauhan R.C., Saxena S.C.: Locally adaptive wavelet domain Bayesian processor for denoising medical ultrasound images using Speckle modeling based on Rayleigh distribution. IEE Proc. Vis. Image Signal Process. 152(1), 129–135 (2005)

    Article  Google Scholar 

  13. Michailovich O.V., Tannenbum A.: Despeckling of ultrasound images. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(1), 64–78 (2006)

    Article  Google Scholar 

  14. Bhuiyan, M.I.H., Ahmad, M.O., Swamy, M.N.S.: New spatial adaptive wavelet based method for the despeckling of medical ultrasound image. In: IEEE Proceeding, pp. 2347–2350 (2007)

  15. Hashim, B.S., Norliza, B.M., Junaidy, B.W.: Contrast resolution enhancement based on wavelet shrinkage and gray level mapping technique. In: IEEE Proceedings, pp. 165–170 (2000)

  16. Zao, Q., Zhunag, L., Zhang, D., Zheng, B.: Denoise and contrast enhancement of ultrasound speckle image. In: ICSP Conference Proceedings, pp. 1500–1503 (2002)

  17. Chang S., Yu B., Vetterli M.: Adaptive wavelet thresholding for image denoising and compression. IEEE Trans. Image Process 9, 1532–1546 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Zhang X.P., Desai M.D.: Adaptive denoising based on SURE risk. IEEE Signal Process. Lett 5(10), 265–267 (1998)

    Article  Google Scholar 

  19. Zhang, X.P.: State-scale adaptive noise reduction in images based on thresholding neural network. In: IEEE Proceeding on Acoustic, Speech and Signal Processing, pp. 1889–1892 (2001)

  20. Zhang X.P.: Thresholding neural network for adaptive noise reduction. IEEE Trans. Neural Netw. 12(3), 567–584 (2001)

    Article  Google Scholar 

  21. Nasri M., Pour H.N.: Image denoising in the wavelet domain using a new adaptive thresholding function. Elsevier J. Neurocomput. 72, 1012–1025 (2009)

    Article  Google Scholar 

  22. Haykin S.: Neural Network: a Comprehensive Foundation, 2nd edn. Pearson Prentice Hall, Singapore (1999)

    MATH  Google Scholar 

  23. Kennedy, J., Eberhart, R.C.: Particle swarm optimization. In: IEEE International Conference on Neural Network, Perth, Australia, pp. 1942–1948 (1995)

  24. Clerc M., Kennedy J.: The particle swarm-explosion, stability and convergence in a multidimensional complex space. IEEE Trans. Evol. Comput. 6, 58–73 (2002)

    Article  Google Scholar 

  25. Bergh F.V.D., Engelbrecht A.P.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8, 225–239 (2004)

    Article  Google Scholar 

  26. ShuKai S.F., YenLin C.W.: Image thresholding using a novel estimation method in generalized Gaussian distribution mixture modeling. Elsevier J. Neurocomput. 72, 500–512 (2008)

    Google Scholar 

  27. Prattt W.K.: Digital Image Processing, 3rd edn. Wiley, Singapore (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. G. Bhutada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhutada, G.G., Anand, R.S. & Saxena, S.C. PSO-based learning of sub-band adaptive thresholding function for image denoising. SIViP 6, 1–7 (2012). https://doi.org/10.1007/s11760-010-0167-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-010-0167-7

Keywords

Navigation