Skip to main content
Log in

Edge extraction using zero-frequency resonator

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper proposes an approach based on the zero-frequency resonator to extract the edge information of the images. The proposed approach is counterintuitive to the concept that edges correspond to high-frequency components of an image. The impulse-like characteristics of edges in an image distribute the energy uniformly over all frequencies of the spectrum including around the zero-frequency. This property is exploited in this paper by using the output of a zero-frequency resonator, for extracting the edge information. Spatial domain and Fourier domain methods are employed to realize the zero-frequency resonator for two-dimensional signals. The Laplacian of the Gaussian (LOG) and the proposed approach are similar in the sense that the former approach uses a Gaussian filter for smoothing operation, whereas a zero-frequency resonator is used in the proposed approach. The output of the resonator is processed using a Laplacian operator for the trend removal. In the resulting filtered image, the edge information is present at the zero-crossings, and the edges are extracted using sign correspondence principle to identify the zero-crossings corresponding to the edges. Results of edge extraction are illustrated for a few clear and noisy images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acton S.T.: Multi grid anisotropic diffusion. IEEE Trans. Image Process. 7(3), 280–291 (1998)

    Article  MathSciNet  Google Scholar 

  2. Basu M.: Gaussian-based edge-detection methods-a survey. IEEE Trans Syst Man Cybern Part C 32(3), 252–260 (2002)

    Article  Google Scholar 

  3. Bovik A.: Handbook of Image and Video Processing, chap. 4.11. Academic Press, New York (2000)

    Google Scholar 

  4. Bovik A.: Handbook of Image and Video Processing, chap. 4.12. Academic Press, New York (2000)

    Google Scholar 

  5. Bovik A.: Handbook of Image and Video Processing, chap. 4.4. Academic Press, New York (2000)

    Google Scholar 

  6. Burt P.J.: Smart sensing within a pyramid vision machine. Proc. IEEE 76(8), 1006–1015 (1988)

    Article  Google Scholar 

  7. Canny J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(11), 679–698 (1986)

    Article  Google Scholar 

  8. Caselles V., Kimmel R., Sapiro G., Sbert C.: Minimal surfaces based object segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 19(4), 394–398 (1997)

    Article  MathSciNet  Google Scholar 

  9. Caselles V., Morel J.: Introduction to the special issue on partial differential equations and geometry-driven diffusion in image processing and analysis. IEEE Trans. Image Process. 7(3), 269–273 (1998)

    Article  MathSciNet  Google Scholar 

  10. Faghih F., Smith M.: Combining spatial and scale-space techniques for edge detection to provide a spatially adaptive wavelet-based noise filtering algorithm. IEEE Trans. Image Process. 11(9), 1062–1071 (2002)

    Article  MathSciNet  Google Scholar 

  11. Geman D., Reynolds G.: Constrained restoration and the recovery of discontinuities. IEEE Trans. Pattern Anal. Mach. Intell. 14(3), 367–383 (1992)

    Article  Google Scholar 

  12. Gonzalez R.C., Woods R.E.: Digital Image Processing. Addison-Wesley Publishing Company Inc, Boston, USA (1992)

    Google Scholar 

  13. Khalil, A., Aggoun, A., Elmabrouk, A.: Edge detection using local histogram analysis. In: Proc. of SPIE, vol. 5150, pp. 2141–2151. Lugano, Switzerland (July 2003)

  14. Konishi S., Yuille A.L., Coughlan J.M., Zhu S.C.: Statistical edge detection: learning and evaluating edge cues. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 57–74 (2003)

    Article  Google Scholar 

  15. Marr D.C., Hildreth E.: Theory of edge detection. Proc. R. Soc. Lond. B 207(1167), 187–217 (1980)

    Article  Google Scholar 

  16. Murty K.S.R., Yegnanarayana B.: Epoch extraction from speech signals. IEEE Trans. Audio Speech Lang. Process. 16(8), 1602–1613 (2008)

    Article  Google Scholar 

  17. Murty K.S.R., Yegnanarayana B., Joseph A.: Characterization of glottal activity from speech signals. IEEE Signal Process. Lett. 16(6), 469–472 (2009)

    Article  Google Scholar 

  18. Oppenheim A.V., Schafer R.W.: Discrete-Time Signal Processing. Prentice Hall of India, New Delhi (1997)

    Google Scholar 

  19. Pattichis M.S., Bovik A.C.: Analyzing image structure by multidimensional frequency modulation. IEEE Trans. Pattern Anal. Mach. Intell. 29(5), 753–766 (2007)

    Article  Google Scholar 

  20. Peli E.: Feature detection algorithm based on a visual system model. Proc. IEEE 90(1), 78–93 (2002)

    Article  Google Scholar 

  21. Shen J., Castan S.: An optimal linear operator for step edge detection. CVGIP: Graphical Models and Image Processing 54(2), 112–133 (1992)

    Article  Google Scholar 

  22. Suzuki K., Horiba I., Sugie N.: Neural edge enhancer for supervised edge enhancement from noisy images. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1582–1596 (2003)

    Article  MATH  Google Scholar 

  23. Teboul S., Blanc-Feraud L., Aubert G., Barlaud M.: Variational approach for edge-preserving regularization using coupled PDEs. IEEE Trans. Image Process. 7(3), 387–397 (1998)

    Article  Google Scholar 

  24. Wang X.: Laplacian operator-based edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 886–890 (2007)

    Article  Google Scholar 

  25. Yegnanarayana, B., Murty, K.S.R., Rajendran, S.: Analysis of stop consonants in Indian languages using excitation source information in speech signal. In: Proc. of ISCA-ITRW Workshop on Speech Analysis and Processing for Knowledge Discovery. Aalborg University, Denmark (June 2008)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anil Kumar Sao.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sao, A.K., Yegnanarayana, B. Edge extraction using zero-frequency resonator. SIViP 6, 287–300 (2012). https://doi.org/10.1007/s11760-011-0233-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-011-0233-9

Keywords

Navigation