Skip to main content

Advertisement

Log in

Occlusion detection and gait silhouette reconstruction from degraded scenes

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Gait, which is defined as the style of walking of a person, has been recognized as a potential biometric feature for identifying human beings. The fundamental nature of gait biometric of being unconstrained and captured often without a subject’s knowledge or co-operation has motivated many researchers over the last one decade. However, all of the approaches found in the literature assume that there is little or no occlusion present at the time of capturing gait images, both during training and during testing and deployment. We look into this challenging problem of gait recognition in the presence of occlusion. A novel approach is proposed, which first detects the presence of occlusion and accordingly extracts clean and unclean gait cycles from the whole input sequence. In the second step, occluded silhouette frames are reconstructed using Balanced Gaussian Process Dynamical Model (BGPDM). We evaluated our approach on a new data set TUM-IITKGP featuring inter-object occlusion. Algorithms have also been tested on CMU’s Mobo data set by introducing synthetic occlusion of different degrees. The proposed approach shows promising result on both the data sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Larsen P.K., Simonsen E.B., Lynnerup N.: Gait analysis in forensic medicine. J. Forensic Sci. 53(5), 1149–1153 (2008)

    Article  Google Scholar 

  2. Cunado D., Nixon M.S., Carter J.N.: Automatic extraction and description of human gait models for recognition purposes. Proc. CVIU 90(1), 1–41 (2003)

    Google Scholar 

  3. Bobick, A., Johnson, A.: Gait recognition using static, activity-specific parameters In: Proceedings of the IEEE Conference on CVPR, vol. 1, pp. 423–430 (2001)

  4. Yam C., Nixon M.S., Carter J.N.: Automated person recognition by walking and running via model-based approaches. Pattern Recognit. 37(5), 1057–1072 (2004)

    Article  Google Scholar 

  5. Jain, A., Dube, T., Ghosh, D.: A fuzzy approach to person identification using gait. In: Proceedings of the IET International Conference on Visual Information Engineering (VIE), pp. 174–179 (2006)

  6. Zhang R., Vogler C., Metaxas D.: Human gait recognition at sagittal plane. Image Vis. Comput. 25(3), 321–330 (2007)

    Article  Google Scholar 

  7. Lu, H., Plataniotis, K.N., Venetsanopoulos, A.N.: A full-body layered deformable model for automatic model-based gait recognition. EURASIP J. Adv. Signal Process. 2008(Article ID 261317) (2008). doi:10.1155/2008/261317

  8. Huang, X., Boulgouris, N.V. Model-based human gait recognition using fusion of features. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 0, pp. 1469–1472 (2009)

  9. Kale A., Sundaresan A., Rajagopalan A.N., Cuntoor N.P., Roy-Chowdhury A.K., Kruger V., Chellappa R.: Identification of humans using gait. IEEE Trans. Image Process. 13, 1163–1173 (2004)

    Article  Google Scholar 

  10. Kale, A., Rajagopalan, A., Cuntoor, N., Krueger, V.: Gait-based recognition of humans using continuous HMMs. In: Proceedings of the International Conference on Automatic Face and Gesture Recognition, pp. 321–326 (2002)

  11. Chen C.H., Liang J., Zhao H., Hu H., Tian J.: Factorial HMM and parallel HMM for gait recognition. IEEE Trans. Syst. Man Cybern. C Appl. Rev. 39(1), 114–123 (2009)

    Article  Google Scholar 

  12. Sundaresan, A., Roy-Chowdhury, A.K., Chellappa, R.: A hidden markov model based framework for recognition of humans frem gait sequences. In: Proceedings of the IEEE Conference Image Processing, vol. 2, pp. 93–99 (2003)

  13. Niyogi, S.A., Adelson, E.H.:Analyzing and recognizing walking figures in XYT. In: Proceedings of the CVPR, pp. 469–474 (1994)

  14. Little J., Boyd J.: Recognizing people by their gait: the shape of motion. Videre J. Comput. Vis. Res. 1(2), 1–32 (1998)

    Google Scholar 

  15. BenAbdelkader, C., Cutler, R., Davis, L.: Motion-based recognition of people in eigengait space. In: Proceedings of International Conference on Automatic Face and Gesture Recognition, pp. 267–274 (2002)

  16. Vega, I., Sarkar, S.: Experiments on gait analysis by exploiting nonstationarity in the distribution of feature relationships. In: Proceedings of the International Conference on Pattern Recognition, vol. 1, pp. 1–4 (2002)

  17. Sarkar S., Phillips P.J., Liu Z., Robledo-Vega I., Grother P., Bowyer K.W.: The human ID gait challenge problem: data sets, performance, and analysis. IEEE Trans. Pattern Anal. Mach. Intel. 27(2), 162–177 (2005)

    Article  Google Scholar 

  18. Hayfron-Acquah, J., Nixon, M., Carter, J.: Human identification by spatio-temporal symmetry. In: Proceedings of the International Conference on Pattern Recognition, vol. 1, pp. 632–635 (2002)

  19. Lee L., Grimson, W.: Gait analysis for recognition and classification. In: Proceedings of the International Conference on Automatic Face and Gesture Recognition, pp. 155–162 (2002)

  20. Boulgouris N.V., Hatzinakos D., Plataniotis K.N.: Gait recognition: a challenging signal processing technology for biometrics identification. IEEE Signal Process. Mag. 22(6), 78–90 (2005)

    Article  Google Scholar 

  21. Lu J., Zhang E.: Gait recognition for human identification based on ICA and fuzzy SVM through multiple views fusion. Pattern Recognit. Lett. 28, 2401–2411 (2007)

    Article  MathSciNet  Google Scholar 

  22. Nixon, M.S., Carter, J.N.: Advances in automatic gait recognition. In: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, pp. 139–144 (2004)

  23. Han J., Bhanu B.: Individual recognition using gait energy image. IEEE Trans. Pattern Anal. Mach. Intel. 28(2), 316–322 (2006)

    Article  Google Scholar 

  24. Yanga X., Zhoua Y., Zhanga T., Shua G., Yanga J.: Gait recognition based on dynamic region analysis. Signal Process. 88(9), 2350–2356 (2008)

    Article  Google Scholar 

  25. Chen C., Liang J., Hu H., Tian J.: Frame difference energy image for gait recognition with incomplete silhouettes. Pattern Recognit. Lett. 30(11), 977–984 (2009)

    Article  Google Scholar 

  26. Zhanga E., Zhao Y., Xionga W.: Energy image plus 2DLPP for gait recognition. Signal Process. 90(7), 2295–2302 (2010)

    Article  Google Scholar 

  27. Pullen, K., Bregler, C.: Motion capture assisted animation: texturing and synthesis. In: Proceedings of theof SIGGRAPH, pp. 501–508 (2002)

  28. Wang J.M., Fleet D.J., Hertzmann A.: Gaussian process dynamical models for human motion. IEEE Trans. PAMI 30(2), 283–298 (2008)

    Article  Google Scholar 

  29. Lawrence, N.D.(2004) Gaussian process latent variable models for visualisation of high dimensional data. In: Thrun, S., Saul, L., Schlkopf, B. (eds.). Advances in Neural Information Processing Systems, pp. 329–336 MIT Press, Cambridge, MA

  30. Rabiner L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  31. Wang, J.M., Fleet, D.J., Hertzmann, A.: Gaussian process dynamical models. In: Proceedings of the NIPS, pp. 1441–1448 (2005)

  32. Urtasun, R., Fleet, D.J., Fua, P.: 3D people tracking with Gaussian process dynamical models. In: Proceedings of the CVPR, pp. 238–245 (2006)

  33. Gross, R., Shi, J.: The CMU Motion of Body (MoBo) Database. Technical report CMU-RI-TR-01-18, Robotics Institute, Carnegie Mellon University (2001)

  34. Center for biometrics and security research, CASIA. http://www.cbsr.ia.ac.cn

  35. Turk M., Pentland A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)

    Article  Google Scholar 

  36. Hofmann, M., Sural, S., Rigoll, G.: Gait recognition in the presence of occlusion: a new dataset and baseline algorithms. In: Proceedings of the International Conference on Computer Graphics, Visualization and Computer Vision (WSCG). Plzen, Czech Republic (2011)

  37. http://www.mmk.ei.tum.de/~hom/tumiit/tumiitgait.html

  38. Staufferand, C., Grimson, W.E.L.: Adaptive background mixture modelsfor real-time tracking. In: Proceedings of the CVPR, pp. 246–252 (1999)

  39. Tanimoto, T.T.: IBM Internal Report, 17 Nov (1957)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aditi Roy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Roy, A., Sural, S., Mukherjee, J. et al. Occlusion detection and gait silhouette reconstruction from degraded scenes. SIViP 5, 415–430 (2011). https://doi.org/10.1007/s11760-011-0245-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-011-0245-5

Keywords

Navigation