Skip to main content
Log in

A unified framework for peak detection and alignment: application to HR-MAS 2D NMR spectroscopy

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we propose a new scheme to detect and align simultaneously peaks that correspond to different metabolites within a biopsy. The proposed peak detection and alignment scheme is based on the use of evidence theory, which is well suited to model uncertainty and imprecision characterizing the 2D NMR HR-MAS spectra. Consequently, we propose the coupling use of Bayesian and fuzzy set theories to model and quantify the imprecision degree, which is then exploited to define the mass function. We particularly show that our new mass function definition and the use of evidence theory for peak detection and alignment achieve consistently high performance compared to a Bayesian scheme on both synthetic and real spectra. The high quality of peak alignment precision reached by the use of evidence theory allows us to efficiently detect reliable biomarkers, which is an essential step for a better therapeutic and human complement system management in case of multiple sclerosis disease, cancer, etc.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Jemal A., Siegel R., Ward E., Hao Y., Xu J., Thun M.J.: Cancer statistics, 2009. CA Cancer J. Clin. 59(4), 225 (2009)

    Article  Google Scholar 

  2. Piotto M., Moussallieh F.M., Dillmann B., Imperiale A., Neuville A., Brigand C., Bellocq J.P., Elbayed K., Namer I.J.: Metabolic characterization of primary human colorectal cancers using high resolution magic angle spinning 1 H magnetic resonance spectroscopy. Metabolomics 5(3), 292–301 (2009)

    Article  Google Scholar 

  3. Griffin J.L., Shockcor J.P.: Metabolic profiles of cancer cells. Nat. Rev. Cancer 4(7), 551–561 (2004)

    Article  Google Scholar 

  4. Zheng M., Lu P., Liu Y., Pease J., Usuka J., Liao G., Peltz G.: 2D NMR metabonomic analysis: a novel method for automated peak alignment. Bioinformatics 23(21), 2926 (2007)

    Article  Google Scholar 

  5. Chui H., Rangarajan A.: A new point matching algorithm for non-rigid registration. Comput. Vis. Image Underst. 89(2–3), 114–141 (2003)

    Article  MATH  Google Scholar 

  6. Haeb-Umbach R., Ney H.: Improvements in beam search for 10000-word continuous-speech recognition. Speech Audio Process. IEEE Trans. 2(2), 353–356 (1994)

    Article  Google Scholar 

  7. Shafer, G.: A mathematical Theory of Evidence. (1976)

  8. Burduk, R.: Imprecise information in Bayes classifier. Pattern. Anal. Appl. 14, 1–7

  9. Flitti F., Collet C., Slezak E.: Image fusion based on pyramidal multiband multiresolution markovian analysis. Signal Image Video Process. 3(3), 275–289 (2009)

    Article  MATH  Google Scholar 

  10. Bezdek J.C., Keller J., Krisnapuram R., Pal N.R.: Fuzzy Models and Algorithms for Pattern Recognition and Image Processing. Kluwer Academic Publishers, Dordrecht (1999)

    MATH  Google Scholar 

  11. Gautam R.S., Singh D., Mittal A.: A fuzzy logic approach to detect hotspots with NOAA/AVHRR image using multi-channel information fusion technique. Signal Image Video Process. 1(4), 347–357 (2007)

    Article  MATH  Google Scholar 

  12. Sao A.K., Yegnanarayana B., Vijaya Kumar B.V.K.: Significance of image representation for face verification. Signal Image Video Process. 1(3), 225–237 (2007)

    Article  MATH  Google Scholar 

  13. Becker E.D.: High Resolution NMR: Theory and Chemical Applications. Academic Press, NY (2000)

    Google Scholar 

  14. Shafer G.: A Mathematical Theory of Evidence. Princeton university press , Princeton (1976)

    MATH  Google Scholar 

  15. Kohlas J., Monney P.A.: A Mathematical Theory of Hints: An Approach to the Dempster–Shafer Theory of Evidence. Springer, Berlin (1995)

    Book  MATH  Google Scholar 

  16. Bodenhausen G., Bolton P.H.: Elimination of flip angle effects in two-dimensional NMR spectroscopy. Application to cyclic nucleotides. J. Magn. Reson. 39, 399 (1980)

    Google Scholar 

  17. Smith F.M., Roberts G.O.: Bayesian computation via the Gibbs sampler and related Markov chain Monte Carlo methods. J. R. Stat. Soc. Series B Methodol. 55(1), 3–23 (1993)

    MathSciNet  MATH  Google Scholar 

  18. Hsiao T., Rangarajan A., Gindi G.: Bayesian image reconstruction for transmission tomography using deterministic annealing. J. Electron. Imaging 12, 7 (2003)

    Article  Google Scholar 

  19. Dobigeon N., Moussaoui S., Tourneret J.Y., Carteret C.: Bayesian separation of spectral sources under non-negativity and full additivity constraints. Signal Process. 89(12), 2657–2669 (2009)

    Article  MATH  Google Scholar 

  20. Cowles M.K., Carlin B.P.: Markov chain Monte Carlo convergence diagnostics: a comparative review. J. Am. Stat. Assoc. 91(434), 883–904 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Toews, M., Collins, D.L., Arbel, T.: Maximum a posteriori local histogram estimation for image registration. Medical Image Computing and Computer-Assisted Intervention—MICCAI, pp. 163–170 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akram Belghith.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Belghith, A., Collet, C., Rumbach, L. et al. A unified framework for peak detection and alignment: application to HR-MAS 2D NMR spectroscopy. SIViP 7, 833–842 (2013). https://doi.org/10.1007/s11760-011-0272-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-011-0272-2

Keywords

Navigation