Skip to main content
Log in

Vision-based hexagonal image processing using Hex-Gabor

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

About 97% receptive field of the neurons is very closely described as 2D Gabor wavelet and it is mostly suitable for vision system modeling. Immense work is available on texture information, especially for rectangular structures. However, there is a little work in recognizing minute details in an image on hexagonal structure by either interpolation or enhancement. In this work, the two important operations of biological visual system such as enhancement and interpolation are performed using the Hex-Gabor process. It is possible to obtain an error-free image at sigma = 2/pi using the proposed Hex-Gabor process and the significance of this sigma value is proved. For the performance analysis standard reflected images and X-ray images are considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kamgar-Parsi, B., Sander, W.A.: Quantization error in spatial sampling: comparison between square and hexagonal pixels. In: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR), pp. 604–611 (1989)

  2. Vitulli, R.: Aliasing effects mitigation by optimized sampling grids and impact on image acquisition chains. In: Proceedings of the Symposium on Geoscience and Remote Sensing Symposium (IGARSS), pp. 979-981 (2002)

  3. Staunton R.C.: The processing of hexagonally sampled images. J. Adv. Imaging Electron. Phys. 119, 191–265 (2001)

    Article  Google Scholar 

  4. Her I.: Geometric transformations on the hexagonal grid. In: IEEE Trans. Image Process. 4(9), 1213–1222 (1995)

    Google Scholar 

  5. Hartman N.P., Tanimoto S.L.: A hexagonal pyramid data structure for image processing. IEEE Trans. Syst. Man Cybernet. 14, 247–256 (1984)

    Article  Google Scholar 

  6. Sheridan P.: Spiral Architecture for Machine Vision. University of Technology, Sydney (1996)

    Google Scholar 

  7. Wu, Q., He, X., Hintz, T.: Virtual spiral architecture. In: Proceedings of the International Conference on Parallel and Distributed Processing Techniques and Applications, pp. 399-405 (2004)

  8. Unser M.: Splines: a perfect fit for signal and image processing. IEEE Signal Process. Mag. 16(6), 22–38 (1999)

    Article  Google Scholar 

  9. Unser M., Aldroubi A., Eden M.: B-spline signal processing. IEEE Trans. Signal Process. 41, 821–848 (1993)

    Article  MATH  Google Scholar 

  10. Unser M.: Fast B-spline transforms for continuous image representation and interpolation. IEEE Trans. Pattern Anal. Mach. Intell. 13, 277–285 (1991)

    Article  Google Scholar 

  11. Van De Ville D., Blu T., Unser M., Philips W., Lemahieu I., Van De Walle R.: Hex-spline: a novel family for hexagonal lattices. IEEE Trans. Image Process. 13(6), 758–772 (2004)

    Article  MathSciNet  Google Scholar 

  12. Condat L., Van De Ville D.: Quasi-interpolating spline models for hexagonally-sampled data. IEEE Trans. Image Process. 16(5), 1195–1206 (2007)

    Article  MathSciNet  Google Scholar 

  13. Faille F., Petrou M.: Invariant image reconstruction from irregular samples and hexagonal grid splines. J. Image Vis. Comput. 28(8), 1173–1183 (2010)

    Article  Google Scholar 

  14. Thiem, J., Hartmann, G.: Biology-inspired design of digital Gabor filters upon a hexagonal sampling scheme. In: Proceedings of the IEEE International Conference on Pattern Recognition (2000)

  15. Jones J.P., Palmer L.A.: An evaluation of the two-dimensional gabor filter model of simple receptive fields in cat striate cortex. J. Neurophysiol. 58(6), 1223–1258 (1987)

    Google Scholar 

  16. Xu, Y., Zhang, X.: Gabor Filter bank and its application in the fingerprint texture analysis. In. Proceedings of the Sixth International Conference on Parallel and Distributed Computing Applications and Technologies pp. 829–831 (2005)

  17. Huang, L., Shimizu, A., Kobatake, H.: Classification-based face detection using Gabor filter features. In: Proceedings of the IEEE International Conference on Automatic Face and Gesture Recognition, pp. 397–402 (2004)

  18. Jain A.K., Prabhakar S., Hong L., Pankanti S.: Filter bank-based fingerprint matching. IEEE Trans. Image Process. 9(5), 846–859 (2000)

    Article  Google Scholar 

  19. Manjunath B.S., Ma W.Y.: Texture features for browsing and retrieval of image data. IEEE Trans. Pattern Analy. Mach. Intell. 18(8), 837–842 (1996)

    Article  Google Scholar 

  20. Veni S., Narayanankutty K.A.: Gabor functions for interpolation on hexagonal lattice. J. Electron. Commun. Technol. IJECT 2(1), 15–19 (2011)

    Google Scholar 

  21. Veni, S., Narayanankutty, K.A.: Image enhancement of medical images using Gabor filter bank on hexagonal sampled grids. WASET J. 65, 816–821 (2010) http://www.waset.org/journals/waset/v65.php

  22. Perona P., Malik J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  23. Parker A., Kenyon R.V., Troxel D.E.: Comparison of interpolating methods for image resampling. IEEE Trans. Med. Imaging MI-2(1), 31–39 (1983)

    Article  Google Scholar 

  24. Thévenaz P., Blu T., Unser M.: Interpolation revisited. IEEE Trans. Med. Imag. 19(7), 739–758 (2000)

    Article  Google Scholar 

  25. Robinson, M.D., Farsiu, S., Lo, J.Y., Toth, C.A.: Efficient restoration and enhancement of super-resolved X-ray images. In: IEEE Proceedings of the International Conference on Image Processing (ICIP) , pp. 629–632 (2008)

  26. Destobbeleire. R.: Super-Resolution. Report during Training period at the IMPA, supervised by Velho, L. (IMPA, Brazil) and Mallat, S. (École polytechnique, France) (2002)

  27. Lindenbaum M., Fischer M., Bruckstein A.M.: On Gabor’s contribution to image enhancement. Pattern Recognit. 27(1), 1–8 (1994)

    Article  Google Scholar 

  28. Zhao F., Gao Q.-W., Zhang D.-X., Lu Y.-X.: Medical X-ray image enhancement based on Kramer’s PDE model. J. Electron. Sci. Technol. China 5(2), 187–190 (2007)

    Google Scholar 

  29. Öktem H., Egiazarian K., Niittylahti J., Lemmetti J.: An approach to adaptive enhancement of diagnostic X-ray images. EURASIP J. Appl. Signal Process. 5, 430–436 (2003)

    Article  Google Scholar 

  30. Forster B., Blu T., Unser M.: Complex B-splines. Appl. Comput. Harmon. Anal. 20(2), 261–282 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  31. Chaudhury K.N., Unser M.: Construction of Hilbert transform pairs of wavelet bases and Gabor-like transforms. IEEE Trans. Signal Process. 57(9), 3411–3425 (2009)

    Article  MathSciNet  Google Scholar 

  32. Tsai, D-Y., Kojima, K.: Wavelet Coefficient mapping for enhancement of chest X-ray images. In: Proceedings, XVII IMEKO World Congress, Dubrovnik, Croatia (2003)

  33. Tateyama T., Nakao Z., Han X., Chen Y.-W.: Contrast enhancement of MR brain images by canonical correlations based kernel independent component analysis. J. Innov. Comput. Inf. Control 5(7), 1857–1866 (2009)

    Google Scholar 

  34. Najim, M. (2007) Digital Filters Design for Signal and Image Processing. ISTE Ltd, USA

  35. Periaswamy, S.: Detection of micro calcifications in mammograms using hexagonal wavelets. Thesis work, University of South Carolina (1996)

  36. Yang, Y., Li, B.: Non-linear image enhancement for digital TV applications using Gabor filters. In: Proceedings of the IEEE International Conference on Multimedia and Expo, pp. 1018–1021 (2005)

  37. Grossberg, S., Mingolla, E., Williamson, J.: Synthetic aperture radar processing by a multiple scale neural system for boundary and surface representation. IEEE Trans. Neural Netw. 8, 1005–1028 (1995)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Veni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Veni, S., Narayanankutty, K.A. Vision-based hexagonal image processing using Hex-Gabor. SIViP 8, 317–326 (2014). https://doi.org/10.1007/s11760-012-0293-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0293-5

Keywords

Navigation