Skip to main content

Advertisement

Log in

Design redundant Chebyshev dictionary with generalized extreme value distribution for sparse approximation and image denoising

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper illustrates a novel method for designing redundant dictionary from Chebyshev polynomials for sparse coding. Having an overcomplete dictionary in \({{\mathbb R}^{d \times N}:d < N}\) from N, orthogonal functions need to sample d times from orthogonal intervals. It is proved (“Appendix B”) that uniform distribution is not optimal for sampling. Experiments show that using non-uniform measures for dividing orthogonal intervals has some advantages in making incoherent dictionary with a mutual coherence closer to equiangular tight frames, which is appropriate for sparse approximation methods. In this paper, we first describe the dictionary design problem, then modify this design with any kind of distribution, and define an objective function respect to its parameters. Because of the abundant extremums in this objective function, genetic algorithm is used to find the best parameters. Experimental results show that generalized extreme value distribution has better performance among others. This type of dictionary design improves the performance of sparse approximation and image denoising via redundant dictionary. The advantages of this method of designing overcomplete dictionaries are going to be compared with uniform ones in sparse approximation areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ETF:

Equiangular tight frame

GEVD:

Generalized extreme value distribution

OMP:

Orthogonal matching pursuit

GA:

Genetic algorithm

PSNR:

Peak signal-to-noise ratio

D d × N :

General overcomplete dictionary of size d × N (d < N)

μ (D d × N ):

Mutual coherence of D d × N

T n (t):

Chebyshev polynomials

\({D_{\mathcal C}}\) :

Overcomplete dictionary from T n (t)

\({G_{\mathcal C}}\) :

Gram matrix of \({D_{\mathcal C}}\)

\({{\mathcal G}_G}\) :

Gram matrix of ETFs

μ (G d × N ):

Mutual coherence of ETF

Θ:

Sampling distribution

θ p :

pth parameter of Θ

s u (n):

Uniform sampler

s nu (n):

Non-uniform sampler

D u :

Overcomplete dictionary with uniform distribution of orthogonal function

μ u :

Mutual coherence of uniform overcomplete dictionary

μ nu :

Mutual coherence of non-uniform overcomplete dictionary

μ :

Mean value

σ :

Standard deviations

k :

Shape parameter in GEVD

References

  1. Mallat S., Zhang Z.: Matching pursuits with time frequency dictionaries. In: IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)

    MATH  Google Scholar 

  2. Aharon M., Elad M., Bruckstein A.M.: On the uniqueness of overcomplete dictionaries, and a practical way to retrieve them. J. Linear Algebra Appl. 416, 48–67 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Davis, G.: Adaptive nonlinear approximations, Ph.D. dissertation, New York University, New York, NY (1994)

  4. Gharavi-Alkhansari, M., Huang, T.S.: A fast orthogonal matching pursuit algorithm. In: IEEE Proceedings of the International Conference on Acoustics Speech and Signal Processing, Seattle, USA, pp. 1389–1392, May 1998

  5. Temlyakov V.N.: Weak greedy algorithms. Adv. Comput. Math. 12(2–3), 213–227 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen S., Billings S.A., Luo W.: Orthogonal least squares methods and their application to non-linear system identification. Int. J. Control 50(5), 1873–1896 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  7. Blumensath T., Davies M.: Gradient pursuits. In: IEEE Trans. Signal Process. 56(6), 2370–2382 (2008)

    MathSciNet  Google Scholar 

  8. Gorodnitsky I.F., Rao B.D.: Sparse signal reconstruction from limited data using FOCUSS: a re-weighted norm minimization algorithm. In: IEEE Trans. on Signal Process. 45(3), 600–616 (1997)

    Google Scholar 

  9. Chen S., Donoho D., Saunders M.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 43(1), 129–159 (2001)

    MATH  MathSciNet  Google Scholar 

  10. Rubinstein R., Bruckstein A.M., Elad M.: Dictionaries for sparse representation modeling. In: IEEE Proc. Special Issue Appl. Sparse Represent. Compress. Sens. 98(6), 1045–1057 (2010)

    Google Scholar 

  11. Mallat, S.: A Wavelet Tour of Signal Processing, 3rd edn, pp. 263–483. Academic, New York, NY. Ch. 7 and ch.8 (2009)

  12. Candès, E.J., Donoho, D.L.: Curvelets, a surprisingly effective non adaptive representation for objects with edges. In: Curve and Surface Fitting: Saint-Malo, pp. 105–120. Vanderbilt University Press, Nashville, TN (1999)

  13. Do M.N., Vetterli M.: The contourlet transform: an efficient directional multiresolution image representation. In: IEEE Trans. Image Process. 14(12), 2091–2106 (2005)

    MathSciNet  Google Scholar 

  14. LePennec E., Mallat S.: Sparse geometric image representations with bandelets. In: IEEE Trans. Image Process. 14(4), 423–438 (2005)

    MathSciNet  Google Scholar 

  15. Engan, K., Aase, S.O., Husoy, J.H.: Method of optimal directions for frame design. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 5, pp. 2443–2446 (1999)

  16. Aharon M., Elad M., Bruckstein A.M.: The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. In: IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Google Scholar 

  17. Yaghoobi M., Blumensath T., Davies M.: Parametric dictionary design for sparse coding. In: IEEE Trans. Signal Process. 57(12), 4800–4810 (2009)

    MathSciNet  Google Scholar 

  18. Rubinstein R., Zibulevsky M., Elad M.: Double sparsity: learning sparse dictionaries for sparse signal approximation. In: IEEE Trans. Signal Process. 58(3), 1553–1564 (2010)

    MathSciNet  Google Scholar 

  19. Aharon M., Elad M., Bruckstein A.M.: The K-SVD: an algorithm for designing of overcomplete dictionaries for sparse representation. In: IEEE Trans. Signal Process. 54(11), 4311–4322 (2006)

    Google Scholar 

  20. Strohmer T., Heath R.: Grassmannian frames with applications to coding and communication. Appl. Comput. Harmon. Anal. 14(3), 257–275 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  21. Tropp J., Dhillon I., Heath R. Jr, Strohmer T.: Designing structural tight frames via an alternating projection method. In: IEEE Trans. Inf. Theory 51(1), 188–209 (2005)

    MathSciNet  Google Scholar 

  22. Ahmed N., Roo K.R.: Orthogonal Transforms for Digital Signal Processing, pp. 170. Springer, Berlin (1975)

    Book  MATH  Google Scholar 

  23. Nakagaki K., Mukundan R.: A fast 4 × 4 forward discrete Tchebichef transform algorithm. In: IEEE Signal Process. Lett. 14(10), 684–687 (2007)

    Google Scholar 

  24. Lee P.A., Mukundan R., Ong S.H.: Image analysis by Tchebichef moments. In: IEEE Trans. Image Process. 10(9), 1357–1364 (2001)

    MATH  MathSciNet  Google Scholar 

  25. Kotz S., Nadarajah S.: Extreme Value Distributions: Theory and Application. Imperial College Press, London (2000)

    Book  Google Scholar 

  26. Nikiforov A.V., Suslov S.K., Uvarov V.B.: Classical Orthogonal Polynomials of a Discrete Variable. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  27. Goldberg D.E.: Genetic Algorithms in Search, Optimization and Machine learning. Addison Wesley, Boston, MA (1989)

    MATH  Google Scholar 

  28. Bury, K.: Statistical Distributions in Engineering, pp. 120–225. Cambridge University Press, Cambridge. Ch. 10–13 (1999)

  29. Bruckstein A.M., Donoho D.L., Elad M.: From sparse solutions of systems of equations to sparse modeling of signals and images. SIAM Rev. 51(1), 34–81 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Gribonval, R., Schnass, K.: Some recovery conditions for basis learning by L1-minimization. In: Proceedings of the International Symposium on Communications, Control, Signal Processing (ISCCSP), Malta, 12–14 March, pp. 768–773 (2008)

  31. Tropp J.: Greed is good: algorithmic results for sparse approximation. In: IEEE Trans. Inf. Theory 50(10), 2231–2242 (2004)

    MathSciNet  Google Scholar 

  32. Gribonval R., Vandergheynst P.: On the exponential convergence of matching pursuits in quasi-incoherent dictionaries. In: IEEE Trans. Inf. Theory 52(1), 255–261 (2006)

    MathSciNet  Google Scholar 

  33. Elad, M.: Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing. Springer, Heidelberg (2010). http://www.springer.com/mathematics/analysis/book/978-1-4419-7010-7

  34. Elad M., Aharon M.: Image Denoising via Sparse and Redundant representations over Learned Dictionaries. In: IEEE Trans. Image Process. 15(12), 3736–3745 (2006)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hani Nozari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nozari, H., Karami, M.R. Design redundant Chebyshev dictionary with generalized extreme value distribution for sparse approximation and image denoising. SIViP 8, 327–338 (2014). https://doi.org/10.1007/s11760-012-0295-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0295-3

Keywords

Navigation