Skip to main content
Log in

Linear estimator for fractional systems

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

We address the issue of state estimation of nonlinear incommensurate fractional-order systems via linear observer in this paper. The basic idea is proposed under a synchronization framework which makes the response system a linear observer for the state of the drive system. By developing this approach, a linear time-invariant synchronization error system is obtained, and stability analysis is relied on the theory of linear incommensurate fractional-order systems. The suggested tool proves to be effective and systematic in achieving global synchronization. Simulation results verify and illustrate the effectiveness of the proposed method on some new fractional-order hyperchaotic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ortigueira M.D., Tenreiro Machado J.A., Trujillo J.J., Vinagre B.M.: Fractional signals and systems. Signal Process. 91, 349 (2011)

    Article  Google Scholar 

  2. Tenreiro Machado J., Kiryakova V., Mainardi F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simulat. 16(3), 1140–1153 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  3. Delavari, H., Senejohnny, D.M.: Robotics: State of the Art and Future Trends. Nova Science Publishers, New York, Chap. 7, pp. 187–209. ISBN: 978-1-62100-403-5 (2012)

  4. Caldern A.J., Vinagre B.M., Feliu V.: Fractional order control strategies for power electronic buck converters. Signal Process. 86(10), 2803–2819 (2006)

    Article  Google Scholar 

  5. Delavari H., Ghaderi R., Ranjbar A., Momani S.: Fuzzy fractional order sliding mode controller for nonlinear systems. Commun. Nonlinear Sci. Numer. Simulat. 15(4), 963–978 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Marcos M.G., Machado J.A.T., Azevedo-Perdicou′lis T.P.: A fractional approach for the motion planning of redundant and hyper-redundant manipulators. Signal Process. 91(3), 562–570 (2011)

    Article  MATH  Google Scholar 

  7. Podlubny I.: Fractional-order systems and PI λ D μ-controllers. IEEE Trans. Automat. Control. 44, 208–214 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  8. Li H., Luo Y., Chen Y.: Fractional order proportional and derivative (FOPD) motion controller: tuning rule and experiments. In: IEEE Trans. Control Syst. Technol. 18(2), 516–520 (2010)

    Google Scholar 

  9. Chen Y.Q., Vinagre B.M., Podlubny I.: Fractional order disturbance observer for robust vibration suppression. Nonlinear Dyn. 38(1–4), 355–367 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  10. Vinagre B.M., Petras I., Podlubny I., Chen Y.Q.: Using fractional order adjustment rules and fractional order reference models in model-reference adaptive control. Nonlinear Dyn. 29(1–4), 269–279 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Vinagre B.M., Chen Y.Q., Petras I.: Two direct tustin discretization methods for fractional-order differentiator/integrator. J. Franklin Inst. 340(5), 349–362 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Sabatier J.M., Agrawal O.P., Machado J.A.T.: Advances in Fractional Calculus: Theoretical Developments and Applications in Physics and Engineering. Springer, Berlin (2007)

    Book  Google Scholar 

  13. Tavazoei M.S.: Notes on integral performance indices in fractional-order control systems. J. Process Control 20(3), 285–291 (2010)

    Article  Google Scholar 

  14. Agrawal, O.P., Machado, J.A.T., Sabatier, J. (eds.): Special issue on fractional derivatives and their applications. Nonlinear Dyn. 38, 1–4 (2004)

  15. Sierociuk D., Tejado I., Vinagre B.M.: Improved fractional Kalman filter and its application to estimation over lossy networks. Signal Process. 91(3), 542–552 (2011)

    Article  MATH  Google Scholar 

  16. Sabatier J., Aoun M., Oustaloup A., Gregoire G., Ragot F., Roy P.: Fractional system identification for lead acid battery state charge estimation. Signal Process. 86(10), 2645–2657 (2006)

    Article  MATH  Google Scholar 

  17. Romero M., deMadrid A.P., Vinagre B.M.: Arbitrary real-order cost functions for signals and systems. Signal Process. 91(3), 372–378 (2011)

    Article  MATH  Google Scholar 

  18. Magin R., Ortigueira M.D., Podlubny I., Trujillo J.: On the fractional signals and systems. Signal Process. 91(3), 350– 371 (2011)

    Article  MATH  Google Scholar 

  19. Vale′rio, D., Ortigueira, M.D., Sa′daCosta, J.: Identifying a transfer function from a frequency response, ASME J. Comput. Nonlinear Dyn. Spec. Issue Discontinuous Fract. Dyn. Syst. 3(2), p. 7 (2008)

  20. Oustaloup A.: Fractional order sinusoidal oscillators: optimization and their use in highly linear FM modulation. In: IEEE Trans. Circuits Syst. 28(10), 1007–1009 (1981)

    Google Scholar 

  21. Ortigueira, M.D., Machado, J.A.T. (eds.): Special issue on fractional signal processing and applications. Signal Process. 83, 11 (2003)

  22. Ortigueira, M.D., Machado, J.A.T. (eds.): Special section: fractional calculus applications in signals and systems. Signal Process. 86, 10 (2006)

  23. Sejdic′a E., Djurovic′b I., Stankovic′ L.: Fractional Fourier transform as a signal processing tool: an overview of recent developments. Signal Process. 91(6), 1351–1369 (2011)

    Article  Google Scholar 

  24. Podlubny I.: Fractional Differential Equations. Academic Press, New York (1999)

    MATH  Google Scholar 

  25. Mainardi F.: Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models. Imperial College Press, London (2010)

    Book  Google Scholar 

  26. Oldham K.B., Spanier J.: The Fractional Calculus. Academic Press, New York (1974)

    MATH  Google Scholar 

  27. Kilbas A.A., Srivastava H.M., Trujillo J.J.: Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies. Elsevier, Amsterdam (2006)

    Google Scholar 

  28. Das S.: Functional Fractional Calculus for System Identification and Controls, 1st edn. Springer, Berlin (2008)

    MATH  Google Scholar 

  29. Magin R.L.: Fractional Calculus in Bioengineering. Begell House Publishers, New York (2006)

    Google Scholar 

  30. Butzer P.L., Westphal U.: An Introduction to Fractional Calculus. World Scientific, Singapore (2000)

    Google Scholar 

  31. Samko S.G., Kilbas A.A., Marichev O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon and Breach, Yverdon (1993)

    MATH  Google Scholar 

  32. Li C., Chen G.: Chaos in the fractional order Chen system and its control. Chaos Solitons Fractals 22(3), 549–554 (2004)

    Article  MATH  Google Scholar 

  33. Li C., Chen G.: Chaos and hyperchaos in the fractional-order Rössler equations. Phys. A Stat. Mech. Appl. 341, 55–61 (2004)

    Article  Google Scholar 

  34. Deng W., Li C.: Chaos synchronization of the fractional Lü system. Phys. A 353, 61–72 (2005)

    Article  Google Scholar 

  35. Deng W., Li C.: Synchronization of chaotic fractional Chen system. J. Phys. Soc. Jpn. 74(6), 1645–1648 (2005)

    Article  MATH  Google Scholar 

  36. Wang J., Zhang Y.: Designing synchronization schemes for chaotic fractional-order unified systems. Chaos Solitons Fractals 30(5), 1265–1272 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Pan L., Zhou W., Fang J., Li D.: Synchronization and anti-synchronization of new uncertain fractional-order modified unified chaotic systems via novel active pinning control. Commun. Nonlinear Sci. Numer. Simulat. 15(12), 3754–3762 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  38. Peng G., Jiang Y.: Generalized projective synchronization of a class of fractional-order chaotic systems via a scalar transmitted signal. Phys. Lett. A 372(22), 3963–3970 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  39. Caputo M.: Linear models of dissipation whose Q is almost frequency independent-II. Geophys. J. R. Astron. Soc. 13(5), 529–539 (1967)

    Article  Google Scholar 

  40. Diethelm K., Ford N.J., Freed A.D.: A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dyn. 29(1–4), 3–22 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  41. Hairer E., Nørsett S.P., Wanner G.: Solving Ordinary Differential Equations I: Nonstiff Problems, 2nd revised edition. Springer, Berlin (1993)

    Google Scholar 

  42. Hairer E., Wanner G.: Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  43. Deng W., Li C., Lu J.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48(4), 409–416 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  44. Gao T., Chen Z., Yuan Z., Yu D.: Adaptive synchronization of a new hyperchaotic system with uncertain parameters. Chaos Solitons Fractals 33(3), 922–928 (2007)

    Article  Google Scholar 

  45. Wu X., Lu H., Shen S.: Synchronization of a new fractional-order hyperchaotic system. Phys. Lett. 373(27–28), 2329–2337 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  46. Dadras S., Momeni H.R.: Four-scroll hyperchaos and four-scroll chaos evolved from a novel 4D nonlinear smooth autonomous system. Phys. Lett. A 374(11–12), 1368–1373 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hadi Delavari.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Senejohnny, D.M., Delavari, H. Linear estimator for fractional systems. SIViP 8, 389–396 (2014). https://doi.org/10.1007/s11760-012-0302-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0302-8

Keywords

Navigation