Skip to main content
Log in

Thiele’s continued fractions in digital implementation of noninteger differintegrators

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

A rational approximation is the preliminary step of all the indirect methods for implementing digital fractional differintegrators s ν, with \({\nu \in \mathbb{R}, 0<|\nu| <1 }\) , and where \({s \in \mathbb{C}}\) . This paper employs the convergents of two Thiele’s continued fractions as rational approximations of s ν. In a second step, it uses known s-to-z transformation rules to obtain a rational, stable, and minimum-phase z-transfer function, with zeros interlacing poles. The paper concludes with a comparative analysis of the quality of the proposed approximations in dependence of the used s-to-z transformations and of the sampling period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Podlubny I.: Fractional Differential Equations. Academic Press, San Diego (1999)

    MATH  Google Scholar 

  2. Hilfer R.: Application of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    Book  Google Scholar 

  3. Ortigueira M.D., Tenreiro Machado J.A.: Editorial: fractional signal processing and applications. Signal Process. 83(11), 2285–2286 (2003)

    Article  Google Scholar 

  4. Oustaloup A.: La Commande CRONE. Commande Robuste d’Ordre Non Entièr. Editions Hermès, Paris (1991)

    MATH  Google Scholar 

  5. Podlubny I.: Fractional-order systems and PI λ D μ-controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Mathieu B., Melchior P., Oustaloup A., Ceyral Ch.: Fractional differentiation for edge detection. Signal Process. 83, 2421–2432 (2003)

    Article  MATH  Google Scholar 

  7. Oustaloup A., Levron F., Mathieu B., Nanot F.M.: Frequency band complex noninteger differentiator: characterization and synthesis. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 47(1), 25–39 (2000)

    Article  Google Scholar 

  8. Chen Y.Q., Moore K.L.: Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 49(3), 363–367 (2002)

    Article  MathSciNet  Google Scholar 

  9. Chen Y.Q., Vinagre B.M.: A new IIR-type digital fractional order differentiator. Signal Process. 83, 2359–2365 (2003)

    Article  MATH  Google Scholar 

  10. Chen Y.Q., Vinagre B.M., Podlubny I.: Continued fraction expansions approaches to discretizing fractional order derivatives. An expository review. Nonlinear Dyn. 38(1–2), 155–170 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  11. Maione G.: Concerning continued fractions representation of noninteger order digital differentiators. IEEE Signal Process. Lett. 13(12), 725–728 (2006)

    Article  Google Scholar 

  12. Maione G.: Continued fractions approximation of the impulse response of fractional order dynamic dystems. IET Control Theory Appl. 2(7), 564–572 (2008)

    Article  MathSciNet  Google Scholar 

  13. Podlubny I., Petráš I., Vinagre B.M., O’Leary P., Dorčák.: Analogue realizations of fractional-order controllers. Nonlinear Dyn. 29(1–4), 281–296 (2002)

    Article  MATH  Google Scholar 

  14. Vinagre B.M., Podlubny I., Hernandez A., Feliu V.: Some approximations of fractional order operators used in control theory and applications. Fract. Calc. Appl. Anal. 3(3), 231–248 (2000)

    MathSciNet  MATH  Google Scholar 

  15. Matsuda K., Fujii H.: H optimized wave-absorbing control: analytical and experimental results. J. Guid. Control Dyn. 16(6), 1146–1153 (1993)

    Article  MATH  Google Scholar 

  16. Samadi S., Ahmad M.O., Swamy M.N.S.: Exact fractional-order differentiators for polynomial signals. IEEE Signal Process. Lett. 11(6), 529–532 (2004)

    Article  Google Scholar 

  17. Tseng C.-C.: Design of fractional order digital FIR differentiators. IEEE Signal Process. Lett. 8(3), 77–79 (2001)

    Article  Google Scholar 

  18. Tseng C.-C., Pei S.-C., Hsia S.-C.: Computation of fractional derivatives using Fourier transform and digital FIR differentiator. Signal Process. 80(1), 151–159 (2000)

    Article  MATH  Google Scholar 

  19. Vinagre B.M., Chen Y.Q., Petras I.: Two direct Tustin discretization methods for fractional-order differentiator/integrator. J. Franklin Inst. 340(5), 349–362 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tenreiro Machado J.A.: Analysis and design of fractional-order digital control systems. J. Syst. Anal. Model. Simul. 27, 107–122 (1997)

    MATH  Google Scholar 

  21. Tenreiro Machado J.A., Galhano A.: Approximating fractional derivatives in the perspective of system control. Nonlinear Dyn. 56, 401–407 (2009)

    Article  MATH  Google Scholar 

  22. Lorentzen L., Waadeland H.: Continued fractions with applications. In: Brezinski, C., Wuytack, L. (eds.) Studies in Computational Mathematics 3, North-Holland, Amsterdam (1992)

    Google Scholar 

  23. Barbosa R.S., Tenreiro Machado J.A., Silva M.F.: Time domain design of fractional differintegrators using least-squares. Signal Process. 86(10), 2567–2581 (2006)

    Article  MATH  Google Scholar 

  24. Ferdi Y.: Computation of fractional order derivative and integral via power series expansion and signal modelling. Nonlinear Dyn. 46(1-2), 1–15 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Hildebrand F.B.: Introduction to Numerical Analysis, 2nd edn. Dover Publication Inc., New York (1987)

    Google Scholar 

  26. Thiele T.N.: Interpolationsrechnung. B.G. Teubner, Leipzig (1909)

    MATH  Google Scholar 

  27. Al-Alaoui M.A.: Novel digital integrator and differentiator. Electron. Lett. 29(4), 376–378 (1993)

    Article  Google Scholar 

  28. Maione, G.: Approximation of the fractional operator s ν using Thiele’s continued fractions. In: Proceedings of the 4th IFAC Workshop on Fractional Differentiation and Its Applications (FDA’10), University of Extremadura, Badajoz, Spain, October 18–20 (2010)

  29. Al-Alaoui M.A.: A class of second-order integrators and low-pass differentiators. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 42(4), 220–223 (1995)

    Article  Google Scholar 

  30. Al-Alaoui M.A.: Filling the gap between the bilinear and the backward difference transforms: an interactive design approach. Int. J. Elect. Eng. Educ. 34(4), 331–337 (1997)

    Google Scholar 

  31. Maione, G.: Conditions for a class of rational approximants of fractional differentiators/integrators to enjoy the interlacing property. In: Preprints of the 18th IFAC World Congress, pp.13984–13989. Milano, Italy, August 28–September 2 (2011)

  32. Maione G.: High-speed digital realizations of fractional operators in the delta domain. IEEE Trans. Autom. Control 56(3), 697–702 (2011)

    Article  MathSciNet  Google Scholar 

  33. Gantmacher F.R., Krein M.G.: Oscillation Matrices and Kernels and Small Vibrations of Mechanical Systems, revised edition. Chelsea Publishing, American Mathematical Society, Providence (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guido Maione.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maione, G. Thiele’s continued fractions in digital implementation of noninteger differintegrators. SIViP 6, 401–410 (2012). https://doi.org/10.1007/s11760-012-0319-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0319-z

Keywords

Navigation