Skip to main content
Log in

Generalized convolution and product theorems associated with linear canonical transform

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The linear canonical transform (LCT), which is a generalized form of the classical Fourier transform (FT), the fractional Fourier transform (FRFT), and other transforms, has been shown to be a powerful tool in optics and signal processing. Many results of this transform are already known, including its convolution theorem. However, the formulation of the convolution theorem for the LCT has been developed differently and is still not having a widely accepted closed-form expression. In this paper, we first propose a generalized convolution theorem for the LCT and then derive a corresponding product theorem associated with the LCT. The ordinary convolution theorem for the FT, the fractional convolution theorem for the FRFT, and some existing convolution theorems for the LCT are shown to be special cases of the derived results. Moreover, some applications of the derived results are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Moshinsky M., Quesne C.: Linear canonical transformations and their unitary representations. J. Math. Phys. 12, 1772–1783 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  2. Ozaktas H.M., Zalevsky Z., Kutay M.A.: The Fractional Fourier Transform with Applications in Optics and Signal Processing. Wiley, New York (2000)

    Google Scholar 

  3. Barshan M.B., Ozaktas H.M.: Optimal filtering with linear canonical transformations. Opt. Commun. 135, 32–36 (1997)

    Article  Google Scholar 

  4. Wolf K.B.: Integral Transforms in Science and Engineering. Plenum, New York (1979)

    Book  MATH  Google Scholar 

  5. Oktem F.S., Ozaktas H.M.: Equivalence of linear canonical transform domains to fractional Fourier domains and the bicanonical width product: a generalization of the space-bandwidth product. J. Opt. Soc. Am. A 27, 1885–1895 (2010)

    Article  Google Scholar 

  6. Erseghe T., Laurenti N., Cellini V.: A multicarrier architecture based upon the affine Fourier transform. In: IEEE Trans. Commun. 53, 853–862 (2005)

    Google Scholar 

  7. Stern A.: Sampling of linear canonical transformed signals. Signal Process. 86, 1421–1425 (2006)

    Article  MATH  Google Scholar 

  8. Alieva T., Bastiaans M.J.: Properties of the linear canonical integral transformation. J. Opt. Soc. Am. A 24, 3658–3665 (2007)

    Article  MathSciNet  Google Scholar 

  9. Healy J.J., Sheridan J.T.: Fast linear canonical transforms. J. Opt. Soc. Am. A 27, 21–30 (2010)

    Article  MathSciNet  Google Scholar 

  10. Sharma K.K., Joshi S.D.: Uncertainty principle for real signals in the linear canonical transform domains. In: IEEE Trans. Signal Process. 56, 2677–2683 (2008)

    MathSciNet  Google Scholar 

  11. Shinde S.: Two channel paraunitary filter banks based on linear canonical transform. In: IEEE Trans. Signal Process. 59, 832–836 (2011)

    MathSciNet  Google Scholar 

  12. Deng B., Tao R., Wang Y.: Convolution theorems for the linear canonical transform and their applications. Sci. China Inf. Sci. 49, 592–603 (2006)

    Article  MathSciNet  Google Scholar 

  13. Pei S.C., Ding J.J.: Relations between fractional operations and time-frequency distributions and their applications. In: IEEE Trans. Signal Process. 49, 1638–1655 (2001)

    MathSciNet  Google Scholar 

  14. Wei D., Ran Q., Li Y., Ma J., Tan L.: A convolution and product theorem for the linear canonical transform. In: IEEE Signal Process. Lett. 16, 853–856 (2009)

    Google Scholar 

  15. Wei D., Ran Q., Li Y.: A convolution and correlation theorem for the linear canonical transform and its application. Circuits Syst. Signal Process. 31, 301–312 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  16. Wei, D., Ran, Q., Li, Y.: New convolution theorem for the linear canonical transform and its translation invariance property. Optik-Int. J. Light Electron. Opt. (2012). doi:10.1016/j.ijleo.2011.08.054

  17. Shi J., Sha X., Zhang Q., Zhang N.: Extrapolation of bandlimited signals in linear canonical transform domain. In: IEEE Trans. Signal Process. 60, 1502–1508 (2012)

    MathSciNet  Google Scholar 

  18. Giang B.T., Tuan N.M.: Generalized onvolutions for the integral transforms of Fourier type and applications. Fract. Calc. Appl. Anal. 12, 252–268 (2009)

    MathSciNet  Google Scholar 

  19. Thao N.X., Tuan T.: On the generalized convolution for I-transform. Act. Math. Vietnam. 18, 135–145 (2003)

    Google Scholar 

  20. Britvina L.E.: Generalized convolutions for the Hankel transform and related integral operators. Math. Nachr. 280, 962–970 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  21. Zayed A.I.: Function and Generalized Function Transformations. CRC, Boca Raton, FL (1996)

    MATH  Google Scholar 

  22. Zayed A.I.: A convolution and product theorem for the fractional Fourier transform. In: IEEE Signal Process. Lett. 5, 101–103 (1998)

    Google Scholar 

  23. Kraniauskas P., Cariolaro G., Erseghe T.: Method for defining a class of fractional operations. In: IEEE Trans. Signal Process. 46, 2804–2807 (1998)

    MATH  MathSciNet  Google Scholar 

  24. Torres R., Pellat-Finet P., Torres Y.: Fractional convolution, fractional correlation and their translation invariance properties. Signal Process. 90, 1976–1984 (2010)

    Article  MATH  Google Scholar 

  25. Singh, A.K., Saxena, R.: On convolution and product theorems for FRFT. Wirel. Pers. Commun. (2011). doi:10.1007/s11277-011-0235-5

  26. Shi J., Chi Y., Zhang N.: Multichannel sampling and reconstruction of bandlimited signals in fractional Fourier domain. In: IEEE Signal Process. Lett. 17, 909–912 (2010)

    Google Scholar 

  27. Shi J., Zhang N., Liu X.: A novel fractional wavelet transform and its applications. Sci. China Inf. Sci. 55, 1270–1279 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  28. Refregier P., Javidi B.: Optical image encryption based on input plane and Fourier plane random encoding. Opt. Lett. 20, 767–769 (1995)

    Article  Google Scholar 

  29. Papoulis A.: Probability, Random Variables, and Stochastic Processes. McGraw-Hill, New York (1984)

    MATH  Google Scholar 

  30. Tao R., Zhang F., Wang Y.: Fractional power spectrum. In: IEEE Trans. Signal Process. 56, 4199–4206 (2008)

    MathSciNet  Google Scholar 

  31. Scharf L.L., Thomas J.K.: Wiener filters in canonical coordinates for transform coding, filtering, and quantizing. In: IEEE Trans. Signal Process. 46, 647–654 (1998)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, J., Liu, X. & Zhang, N. Generalized convolution and product theorems associated with linear canonical transform. SIViP 8, 967–974 (2014). https://doi.org/10.1007/s11760-012-0348-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0348-7

Keywords