Skip to main content
Log in

Multicomponent AM-FM signal separation and demodulation with null space pursuit

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The operator-based signal separation approach, which formulates signal separation as an optimization problem, uses an adaptive operator to separate a signal into additive subcomponents. Furthermore, it is possible to design different operators to fit different signal models. In this paper, we propose a new kind of differential operator to separate multicomponent AM-FM signals. We then use the estimated operators to calculate each sub-component’s envelope and instantaneous frequency. To demonstrate the efficacy of the proposed method, we compare the decomposition and AM-FM demodulation results of several signals, including real-life signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Airline passenger data (02/09/2011). http://www.stat.unc.edu/faculty/hurd/stat185Data/airpassdoc.html

  2. Auger F., Flandrin P.: Improving the readability of time-frequency and time-scale representations by the reassignment method. In: IEEE Trans. Signal Process. 43(5), 1068–1089 (1995)

    Article  Google Scholar 

  3. Bovik A., Maragos P., Quatieri T.F.: Am-fm energy detection and separation in noise using multiband energy operators. In: IEEE Trans. Signal Process. 41(12), 3245–3265 (1993)

    Article  MATH  Google Scholar 

  4. Carmona R., Hwang W.L., Torresani B.: Practical Time-Frequency Analysis. Academic Press, London (1998)

    MATH  Google Scholar 

  5. Carmona R., Hwang W.L., Torresani B.: Multiridge detection and time-frequency reconstruction. In: IEEE Trans. Signal Process. 47(2), 480–492 (1999)

    Article  Google Scholar 

  6. Cohen, L.: What is a multicomponent signal? In: Proceedings of IEEE ICASSP ’92, pp. 113–116 (1992)

  7. Delprat N., Escudie B., Guilemain P., Kronland-Martinet R., Tchamitchian P., Torresani B.: Asymptotic wavelet and gabor analysis: extraction of instantaneous frequency. In: IEEE Trans. Inf. Theory 38(2), 644–664 (1992)

    Article  MATH  Google Scholar 

  8. Diamantaras K.I.: A clustering approach for the blind separation of multiple finite alphabet sequences from a single linear mixture. Signal Process. 86(4), 877–891 (2006)

    Article  MATH  Google Scholar 

  9. Diamantaras, K.I.: Blind separation of two multi-level sources from a single linear mixture. In: 18th IEEE Workshop on Machine Learning for Signal Processing (MLSP-2008), pp. 67–72. Cancun, Mexico (2008)

  10. Diop E., Boudraa A., Salzenstein F.: A joint 2d AM-FM estimation based on higher order teager–kaiser energy operators. Signal Image Video Process. 5, 61–68 (2011)

    Article  Google Scholar 

  11. Ensemble emd toolbox (02/09/2011) http://rcada.ncu.edu.tw/research1_clip_program.htm

  12. Gianfelici F., Biagetti G., Crippa P., Turchetti C.: Multicomponent am-fm representations: an asymptotically exact approach. In: IEEE Trans. Audio Speech Lang. Process. 15(3), 823–837 (2007)

    Article  Google Scholar 

  13. Gupta, R., Kumar, A., Bahl, R.: Estimation of instantaneous frequencies using iterative empirical mode decomposition. Signal Image Video Process. (2012). doi:10.1007/s11760-012-0305-5

  14. Hanson H., Maragos P., Potamianos A.: A system for finding speech formants and modulations via energy separation. In: IEEE Trans. Speech Audio Process. 2(3), 436–443 (1994)

    Article  Google Scholar 

  15. Hasan M., Apu M., Molla M.: A robust method for parameter estimation of ar systems using empirical mode decomposition. Signal Image Video Process. 4, 451–461 (2010)

    Article  MATH  Google Scholar 

  16. Hu X., Peng S., Hwang W.L.: Estimation of instantaneous frequency parameters of the operator-based signal separation method. Adv. Adapt. Data Anal. 1(4), 573–586 (2009)

    Article  MathSciNet  Google Scholar 

  17. Hu X., Peng S., Hwang W.L.: Emd revisited: a new understanding of the envelope and resolving the mode-mixing problems in am-fm signals. In: IEEE Trans. Signal Process. 60(3), 1075–1086 (2012)

    Article  MathSciNet  Google Scholar 

  18. Huang N., Wu Z., Long S., Arnold K., Chen X., Blank K.: On instantaneous frequency. Adv. Adapt. Data Anal. 1(2), 177–229 (2009)

    Article  MathSciNet  Google Scholar 

  19. Huang N.E., Shen Z., Long S.R., Wu M.L., Shih H.H., Zheng Q., Yen N.C., Tung C.C., Liu H.H., Zhou X., Wong S.T.C.: The empirical mode decomposition and hilbert spectrum for nonlinear and nonstationary time series analysis. Proc. R Soc. Lond. A 454, 903–995 (1998)

    Article  MATH  Google Scholar 

  20. Jabloun M., Leonard F., Vieira M., Martin N.: A new flexible approach to estimate the ia and if of nonstationary signals of long-time duration. In: IEEE Trans. Signal Process. 55(7), 3633–3644 (2007)

    Article  MathSciNet  Google Scholar 

  21. Li, P., Wang, D.C., Wang, L.: Separation of micro-doppler signals based on time frequency filter and viterbi algorithm. Signal Image Video Process. 1–13 (2011)

  22. Maragos P., Kaiser J.F., Quatieri T.F.: On amplitude and frequency demodulation using energy operators. In: IEEE Trans. Signal Process. 41(4), 1532–1551 (1993)

    Article  MATH  Google Scholar 

  23. Nashif A., Jones D.: Vibration Damping. Wiley-Interscience, New York (1985)

    Google Scholar 

  24. Peng S., Hwang W.L.: Adaptive signal decomposition based on local narrow band signals. In: IEEE Trans. Signal Process. 56(7), 2669–2676 (2008)

    Article  MathSciNet  Google Scholar 

  25. Peng S., Hwang W.L.: Null space pursuit: an operator-based approach to adaptive signal separation. In: IEEE Trans. Signal Process. 58(5), 2475–2483 (2010)

    Article  MathSciNet  Google Scholar 

  26. Pham D., Zoubir Z.: Analysis of multicomponent polynomial phase signals. In: IEEE Trans. Signal Process. 55(1), 56–65 (2007)

    Article  MathSciNet  Google Scholar 

  27. Restrepo A., Quiroga J.: Root and pre-constant signals of the 1d teager–kaiser operator. Signal Image Video Process. 5, 363–378 (2011)

    Article  Google Scholar 

  28. Rostami, M., Babaie-Zadeh, M., Samadi, S., Jutten, C.: Blind source separation of discrete finite alphabet sources using a single mixture. In: Proceedings of IEEE Statistical Signal Processing Workshop (SSP2011), pp. 709–712. Nice, France (2011)

  29. Santhanam B., Maragos P.: Multicomponent am-fm decomposition via periodicity-based algebraic separation and energy-based demodulation. In: IEEE Trans. Commun. 48(3), 473–490 (2000)

    Article  Google Scholar 

  30. Søndergaard, P., Torrésani, B., Balazs, P.: The linear time-frequency analysis toolbox. Int. J. Wavelets Multiresolut. Inf. Process. (2012). doi:10.1142/S0219691312500324

  31. Virtanen T.: Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria. In: IEEE Trans. Audio Speech Lang. Process. 15(3), 1066–1074 (2007)

    Article  Google Scholar 

  32. Wu Z., Huang N.: Ensemble empirical mode decomposition: a noise-assisted data analysis method. Adv. Adapt. Data Anal. 1(1), 1–41 (2009)

    Article  Google Scholar 

  33. Zhang T., Fan Q.: Wavelet characterization of dyadic bmo norm and its application in image decomposition for distinguishing between texture and noise. Int. J. Wavelets Multiresolut. Inf. Proces. 9(3), 445–457 (2011)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Silong Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hu, X., Peng, S. & Hwang, WL. Multicomponent AM-FM signal separation and demodulation with null space pursuit. SIViP 7, 1093–1102 (2013). https://doi.org/10.1007/s11760-012-0354-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0354-9

Keywords

Navigation