Skip to main content
Log in

Blind joint information and spreading sequence estimation for short-code DS-SS signal in asynchronous and synchronous systems

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The problem of blind despreading of short-code direct sequence spread-spectrum signal in asynchronous or synchronous system is considered. A novel blind estimation algorithm for time offset, spreading and information sequences is presented in this paper. Firstly, the received signal is divided into two-information-period-length temporal vectors overlapped by one-information-period and accumulates these vectors one by one to form the accumulated matrix. The algorithm exploits an unbiased estimation of user’s time offset to realize synchronization blindly, and an operation of singular value decomposition is applied to the intercepted matrix, which is intercepted from the accumulated matrix according to user’s time offset. Lastly, the spreading sequence is recovered from a right singular vector blindly; therefore, the shortcomings of traditional algorithms, such as phase ambiguity when make use of two vectors to form the spreading sequence, are avoided. And the information sequence is then recovered blindly from the left singular vector. Simulation results show that the new method is capable of retrieving time offset, the spreading and information sequences with higher accuracy than previous methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kunt, M.: Digital Signal Processing, Ch. 6. Artech House, Norwood, pp. 319–338 (1986)

  2. Burel, G., Bouder, C.: Blind estimation of the pseudo-random sequence of a direct sequence spread spectrum signal. In: Presented at MILCOM, 21st Century Military Communication Conference Proceedings, pp. 967–970. Los-Angeles, USA, (Oct 2000)

  3. Shen, L., Zhao, Zh. J.: Blind estimation of the pseudo-random sequences of direct sequence spread spectrum signals in multi-path using fast ICA. In: Presented at Pacific-Asia Conference on Circuits, Communications and System, pp. 531–535. Chengdu, China (May 2009)

  4. Bouder, C., Azou, S.S., Burel, G.: Performance analysis of a spreading sequence estimator for spread spectrum transmissions. Proc. J. Frankl. Inst. 4(1), 595–614 (2004)

    Article  MathSciNet  Google Scholar 

  5. Pickholtz, R., Schilling, D., Milstein, L.B.: Theory of spread spectrum communications a tutorial. Proc. IEEE 30(5), 855–884 (1982)

    Google Scholar 

  6. Saeed, D., Hassan, A., Mahdi, T., et al.: Blind estimation of signal in periodic long-code DSSS communication. In: Presented at IEEE Sarnoff Symposium:SARNOFF’09, pp. 1–6. NJ, USA (March 2009)

  7. Hill, P.C.J., Ridley, M.E.: Blind estimation of direct-sequence spread spectrum m-sequence chip codes. In: Presented at IEEE on 6th Int. Symp. On Spread-Spectrum Technique and Application, pp. 305–309. New Jersey, USA (Sept 2000)

  8. Adams, E.R., Mamdouh, G., Hill, P.C.J.: Statistical techniques for blind detection and discrimination of M-Sequence codes in DSSS systems. In: Presented at 5th International Symposium On Spread-Spectrum Technique and Application, pp. 853–857. Sun City, South, Africa (Sept 1998)

  9. Bouder, C., Azou, S., Burel, G.: A robust synchronization procedure for blind estimation of the symbol period and the timing offset in spread spectrum transmissions. In: Presented at IEEE Seventh International Symposium on Spread Spectrum Techniques and Applications(ISSSTA), pp. 238–241. Prague, Czech Republic (Sept 2002)

  10. Yao, Y., Poor, H.V.: Blind detection of synchronous CDMA in on-Gaussian channels. Proc. IEEE 52(1), 271–279 (2004)

    MathSciNet  Google Scholar 

  11. Chang, T.Q., Mu, A.: A modified eigen-structure analyzer to lower SNR DS-SS signals under narrow band interferences. Proc. Digit. Signal Process. 18(4), 526–529 (2008)

    Article  Google Scholar 

  12. Qui, P.Y., Huang, Z.T., Jiang, W.L., et al.: Improved blind- spreading sequence estimation algorithm for direct sequence spread spectrum signals. Proc. IET Signal Process. 2(2), 139–146 (2008)

    Article  Google Scholar 

  13. Zhang T.Q., Zhou Z.: A spectral method for periodic estimation of the PN sequence in lower SNR DS-CDMA signals. In: Presented at IEEE International Conference on Communication, Circuits and West Sino Expositions, pp. 506–510. Chengdu, China, (Jun 2002)

  14. Zhang, T., Lin, X., Zhou, Z., et al.: A Modified PCA Neural Network to Blind Estimation of the PN Sequence in Lower SNR DS-SS Signals. In: Presented at ISNN2005, Second International Symposium on Neural Networks, pp. 1022–1027. Chongqin, Chian (May 2005)

  15. Nzeza, C.N., Gautier, R., Burel, G.: Blind synchronization and sequences identification in CDMA transmissions. In: Presented at IEEE-AFCEA MILCOM, pp. 1384–1390. California, USA (Oct 2004)

  16. Qiu, P.Y., Huang, Z.T., Jiang, W.L., et al.: Blind classification of the short-code and the long-code direct sequence spread spectrum signals. Proc. IET Signal Process. 4(2), 78–88 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the anonymous reviewers for their valuable comments that helped improve this paper to its present form

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiao-Tian Ren.

Appendix

Appendix

In this Appendix, we complete the derivation which was begun in [4, 9] to approve the outcome (time offset), which is a biased result.

According to Bouder et al. [4], Bouder et al. [9] and EVD of correlation matrix, we get:

$$\begin{aligned} \lambda _i =\alpha _i^2 =\left\{ {\begin{array}{ll} \left\Vert {\vec {h}_0 } \right\Vert^{2}+\sigma _n^2 =\left( {1+\rho \frac{T_s -t_0 }{T_e }} \right)\sigma _n^2&\quad i=1 \\ \left\Vert {\vec {h}_1 } \right\Vert^{2}+\sigma _n^2 =\left( {1+\rho \frac{t_0 }{T_e }} \right)\sigma _n^2&\quad i=2 \\ \sigma _n^2&3\le i\le M \\ \end{array}} \right.\nonumber \\ \end{aligned}$$
(34)

where the parameters’ definitions were given in Bouder et al. [4] and Bouder et al. [9].

Then the estimation of time offset is:

$$\begin{aligned} t_0 =\frac{\lambda _2 -\lambda _3 }{\lambda _1 +\lambda _2 -2\lambda _3 }\times N,\;\;\hat{{t}}_0 =\frac{\hat{{\lambda }}_2 -\hat{{\lambda }}_3 }{\hat{{\lambda }}_1 +\hat{{\lambda }}_2 -2\hat{{\lambda }}_3 }\times N\nonumber \\ \end{aligned}$$
(35)

According to Bouder et al. [4]:

$$\begin{aligned} E\left( {\hat{{\lambda }}_k } \right)=\lambda _k \left( {1+\frac{1}{M} {\mathop {\mathop {\sum \limits _{i=1}}\limits _{i\ne k}}^{N}} {\frac{\lambda _i }{\lambda _k -\lambda _i }} } \right) \end{aligned}$$
(36)

According to (35), we will get:

$$\begin{aligned} \hat{{t}}_0 -t_0&= \frac{1}{N}\left( {\frac{\hat{{\lambda }}_2 -\hat{{\lambda }}_3 }{\hat{{\lambda }}_1 +\hat{{\lambda }}_2 -2\hat{{\lambda }}_3 }-\frac{\lambda _2 -\lambda _3 }{\lambda _1 +\lambda _2 -2\lambda _3 }} \right) \nonumber \\&= \frac{1}{N}\left( {\frac{\left( {\hat{{\lambda }}_2 -\hat{{\lambda }}_3 } \right)\left( {\lambda _1 +\lambda _2 -2\lambda _3 } \right)-\left( {\lambda _2 -\lambda _3 } \right)\left( {\hat{{\lambda }}_1 +\hat{{\lambda }}_2 -2\hat{{\lambda }}_3 } \right)}{\left( {\hat{{\lambda }}_1 +\hat{{\lambda }}_2 -2\hat{{\lambda }}_3 } \right)\left( {\lambda _1 +\lambda _2 -2\lambda _3 } \right)}} \right) \nonumber \\&= \frac{\left( {\hat{{\lambda }}_2 -\hat{{\lambda }}_3 } \right)\left( {\lambda _1 +\lambda _2 -2\lambda _3 } \right)-\left( {\lambda _2 -\lambda _3 } \right)\left( {\hat{{\lambda }}_1 +\hat{{\lambda }}_2 -2\hat{{\lambda }}_3 } \right)}{N\times \left( {\hat{{\lambda }}_1 +\hat{{\lambda }}_2 -2\hat{{\lambda }}_3 } \right)\times \left( {\lambda _1 +\lambda _2 -2\lambda _3 } \right)} \nonumber \\&= \frac{\left( {\hat{{\lambda }}_2 \lambda _1 +\hat{{\lambda }}_2 \lambda _2 -2\hat{{\lambda }}_2 \lambda _3 -\hat{{\lambda }}_3 \lambda _1 -\hat{{\lambda }}_3 \lambda _2 +2\hat{{\lambda }}_3 \lambda _3 } \right)-\left( {\lambda _2 \hat{{\lambda }}_1 +\lambda _2 \hat{{\lambda }}_2 -2\lambda _2 \hat{{\lambda }}_3 -\lambda _3 \hat{{\lambda }}_1 -\lambda _3 \hat{{\lambda }}_2 +2\lambda _3 \hat{{\lambda }}_3 } \right)}{N\times \left( {\hat{{\lambda }}_1 +\hat{{\lambda }}_2 -2\hat{{\lambda }}_3 } \right)\times \left( {\lambda _1 +\lambda _2 -2\lambda _3 } \right)} \nonumber \\&= \frac{\hat{{\lambda }}_2 \times \left( {\lambda _1 -2\lambda _3 +\lambda _3 } \right)+\hat{{\lambda }}_3 \times \left( {2\lambda _2 -\lambda _1 -\lambda _2 } \right)-\hat{{\lambda }}_1 \times \left( {\lambda _2 -\lambda _3 } \right)}{N\times \left( {\hat{{\lambda }}_1 +\hat{{\lambda }}_2 -2\hat{{\lambda }}_3 } \right)\times \left( {\lambda _1 +\lambda _2 -2\lambda _3 } \right)}\nonumber \\&= \frac{\hat{{\lambda }}_2 \times \left( {\lambda _1 -\lambda _3 } \right)-\hat{{\lambda }}_3 \times \left( {\lambda _1 -\lambda _2 } \right)-\hat{{\lambda }}_1 \times \left( {\lambda _2 -\lambda _3 } \right)}{N\times \left( {\hat{{\lambda }}_1 +\hat{{\lambda }}_2 -2\hat{{\lambda }}_3 } \right)\times \left( {\lambda _1 +\lambda _2 -2\lambda _3 } \right)} \end{aligned}$$
(37)

If and only if:

$$\begin{aligned}&E\left( {\hat{{t}}_0 -t_0 } \right) \nonumber \\&\quad = E\left( {N\!\times \! \frac{\hat{{\lambda }}_2 \!\times \! \left( {\lambda _1 \!-\!\lambda _3 } \right)\!-\!\hat{{\lambda }}_3 \!\times \! \left( {\lambda _1 \!-\!\lambda _2 } \right)\!-\!\hat{{\lambda }}_1 \!\times \! \left( {\lambda _2 \!-\!\lambda _3 } \right)}{\left( {\hat{{\lambda }}_1 \!+\!\hat{{\lambda }}_2\!-\!2\hat{{\lambda }}_3 } \right)\!\times \! \left( {\lambda _1 \!+\!\lambda _2 \!-\!2\lambda _3 } \right)}} \right)\!=\!0\nonumber \\ \end{aligned}$$
(38)

\(\hat{{t}}_0 \) is unbiased estimator of \(t_0 \). Equation (38) will be

$$\begin{aligned}&E\left( {\hat{{t}}_0 -t_0 } \right)\nonumber \\&\quad = E\left( {\frac{N\!\times \! \left( {\hat{{\lambda }}_2 \!\times \! \left( {\lambda _1 \!-\!\lambda _3 } \right)\!-\!\hat{{\lambda }}_3 \!\times \! \left( {\lambda _1 \!-\!\lambda _2 } \right)\!-\!\hat{{\lambda }}_1 \!\times \! \left( {\lambda _2 \!-\!\lambda _3 } \right)} \right)}{\left( {\hat{{\lambda }}_1 \!+\!\hat{{\lambda }}_2 \!-\!2\hat{{\lambda }}_3 } \right)\!\times \! \left( {\lambda _1 +\lambda _2 -2\lambda _3 } \right)}} \right) \nonumber \\&\quad = \frac{N}{\left( {\lambda _1 +\lambda _2 -2\lambda _3 } \right)}\nonumber \\&\qquad \times E\left( {\frac{\hat{{\lambda }}_2 \!\times \! \left( {\lambda _1 \!-\!\lambda _3 } \right)\!-\!\hat{{\lambda }}_3 \!\times \! \left( {\lambda _1 \!-\!\lambda _2 } \right)\!-\!\hat{{\lambda }}_1 \!\times \! \left( {\lambda _2 \!-\!\lambda _3 } \right)}{\left( {\hat{{\lambda }}_1 \!+\!\hat{{\lambda }}_2 \!-\!2\hat{{\lambda }}_3 } \right)}} \right)\nonumber \\ \end{aligned}$$
(39)

And the Taylor series expansion of \(1/{\left( {\hat{{\lambda }}_1 +\hat{{\lambda }}_2 -2\hat{{\lambda }}_3 } \right)}\) is:

$$\begin{aligned}&\frac{1}{\left( {\hat{{\lambda }}_1 +\hat{{\lambda }}_2 -2\hat{{\lambda }}_3 } \right)} = \frac{1}{\left( {\lambda _1 +\lambda _2 -2\lambda _3 } \right)+\left( {\tilde{\lambda }_1 +\tilde{\lambda }_2 -2\tilde{\lambda }_3 } \right)} \nonumber \\&\quad \approx \frac{1}{\left( {\lambda _1 +\lambda _2 -2\lambda _3 } \right)}\!-\!\frac{1}{\left( {\lambda _1 +\lambda _2 -2\lambda _3 } \right)^{2}}\left( {\tilde{\lambda }_1 \!+\!\tilde{\lambda }_2 \!-\!2\tilde{\lambda }_3 } \right)\nonumber \\&\qquad +\,o\left( {\left( {\tilde{\lambda }_1 +\tilde{\lambda }_2 -2\tilde{\lambda }_3 } \right)^{2}} \right) \end{aligned}$$
(40)

Where \(\hat{{\lambda }}_i =\lambda _i +\tilde{\lambda }_i ,\;i=1,2,3\), then:

$$\begin{aligned}&\left( {\lambda _2 +\tilde{\lambda }_2 } \right)\times \left( {\lambda _1 -\lambda _3 } \right)-\left( {\lambda _3 +\tilde{\lambda }_3 } \right)\times \left( {\lambda _1 -\lambda _2 } \right) \nonumber \\&\qquad - \left( {\lambda _1 +\tilde{\lambda }_1 } \right)\times \left( {\lambda _2 -\lambda _3 } \right) \nonumber \\&\quad =\lambda _2 \times \left( {\lambda _1 \!-\!\lambda _3 } \right)+\tilde{\lambda }_2 \times \left( {\lambda _1 \!-\!\lambda _3 } \right)\!-\!\lambda _3 \times \left( {\lambda _1 -\lambda _2 } \right)\!-\!\tilde{\lambda }_3 \nonumber \\&\qquad \times \left( {\lambda _1 -\lambda _2 } \right)-\lambda _1 \times \left( {\lambda _2 -\lambda _3 } \right)-\tilde{\lambda }_1 \times \left( {\lambda _2 -\lambda _3 } \right) \nonumber \\&\quad =\tilde{\lambda }_2 \times \left( {\lambda _1 -\lambda _3 } \right)-\tilde{\lambda }_3 \times \left( {\lambda _1 -\lambda _2 } \right)-\tilde{\lambda }_1 \times \left( {\lambda _2 -\lambda _3 } \right)\nonumber \\ \end{aligned}$$
(41)

At the same time, multiplying (41) by (40) gives:

$$\begin{aligned}&\left( {\tilde{\lambda }_2 \times \left( {\lambda _1 -\lambda _3 } \right)\!-\!\tilde{\lambda }_3 \times \left( {\lambda _1 -\lambda _2 } \right)\!-\!\tilde{\lambda }_1 \times \left( {\lambda _2 -\lambda _3 } \right)} \right)\nonumber \\&\qquad \times \ldots \left( \frac{1}{\left( {\lambda _1 +\lambda _2 -2\lambda _3 } \right)}-\frac{1}{\left( {\lambda _1 +\lambda _2 -2\lambda _3 } \right)^{2}}\right.\nonumber \\&\quad \quad \left.\times \left( {\tilde{\lambda }_1 +\tilde{\lambda }_2 \!-\!2\tilde{\lambda }_3 } \right)+\,o\left( {\left( {\tilde{\lambda }_1 +\tilde{\lambda }_2 -2\tilde{\lambda }_3 } \right)^{2}} \right) \right) \nonumber \\&\quad =\left( {\tilde{\lambda }_2 \times \left( {\lambda _1 -\lambda _3 } \right)-\tilde{\lambda }_3 \times \left( {\lambda _1 -\lambda _2 } \right)-\tilde{\lambda }_1 \times \left( {\lambda _2 -\lambda _3 } \right)} \right)\nonumber \\&\quad \quad \times \frac{1}{\left( {\lambda _1 +\lambda _2 -2\lambda _3 } \right)} \nonumber \\&\quad \quad -\left( {\tilde{\lambda }_2 \times \left( {\lambda _1 -\lambda _3 } \right)\!-\!\tilde{\lambda }_3 \times \left( {\lambda _1 -\lambda _2 } \right)\!-\!\tilde{\lambda }_1 \times \left( {\lambda _2 -\lambda _3 } \right)} \right)\nonumber \\&\quad \quad \times \frac{1}{\left( {\lambda _1 +\lambda _2 -2\lambda _3 } \right)^{2}}\left( {\tilde{\lambda }_1 +\tilde{\lambda }_2 -2\tilde{\lambda }_3 } \right) \nonumber \\&\quad \quad +\left( {\tilde{\lambda }_2 \times \left( {\lambda _1 -\lambda _3 } \right)-\tilde{\lambda }_3 \!\times \! \left( {\lambda _1 -\lambda _2 } \right)-\tilde{\lambda }_1 \!\times \! \left( {\lambda _2 -\lambda _3 } \right)} \right)\nonumber \\&\quad \quad \times \, o\left( {\left( {\tilde{\lambda }_1 +\tilde{\lambda }_2 -2\tilde{\lambda }_3 } \right)^{2}} \right) \end{aligned}$$
(42)

In other word, if and only if

$$\begin{aligned} E\left\{ {\begin{array}{l} \left( {\tilde{\lambda }_2 \times \left( {\lambda _1 -\lambda _3 } \right)-\tilde{\lambda }_3 \times \left( {\lambda _1 -\lambda _2 } \right)-\tilde{\lambda }_1 \times \left( {\lambda _2 -\lambda _3 } \right)} \right) \times \frac{1}{\left( {\lambda _1 +\lambda _2 -2\lambda _3 } \right)} \\ -\left( {\tilde{\lambda }_2 \times \left( {\lambda _1 -\lambda _3 } \right)-\tilde{\lambda }_3 \times \left( {\lambda _1 -\lambda _2 } \right)-\tilde{\lambda }_1 \times \left( {\lambda _2 -\lambda _3 } \right)} \right) \times \frac{1}{\left( {\lambda _1 +\lambda _2 -2\lambda _3 } \right)^{2}}\left( {\tilde{\lambda }_1 +\tilde{\lambda }_2 -2\tilde{\lambda }_3 } \right)\\ +\left( {\tilde{\lambda }_2 \times \left( {\lambda _1 -\lambda _3 } \right)-\tilde{\lambda }_3 \times \left( {\lambda _1 -\lambda _2 } \right)-\tilde{\lambda }_1 \times \left( {\lambda _2 -\lambda _3 } \right)} \right) \times o\left( {\left( {\tilde{\lambda }_1 +\tilde{\lambda }_2 -2\tilde{\lambda }_3 } \right)^{2}} \right) \\ \end{array}} \right\} =0 \end{aligned}$$
(43)

\(\hat{{t}}_0 \) is unbiased estimator of \(t_0 \). And it is easy to approve that \(\hat{{t}}_0 \) is unbiased estimator, when \(\lambda _1 =\lambda _2 \), and

$$\begin{aligned}&E\left( {\tilde{\lambda }_2 \times \left( {\lambda _1 -\lambda _3 } \right)-\tilde{\lambda }_3 \times \left( {\lambda _1 -\lambda _2 } \right)-\tilde{\lambda }_1 \times \left( {\lambda _2 -\lambda _3 } \right)} \right) \nonumber \\&\quad =E\left( {\hat{{\lambda }}_2 } \right)\times \left( {\lambda _1 -\lambda _3 } \right)\!-\!E\left( {\hat{{\lambda }}_3 } \right)\times \left( {\lambda _1 -\lambda _2 } \right)\!-\!E\left( {\hat{{\lambda }}_1 } \right)\nonumber \\&\quad \quad \times \left( {\lambda _2 -\lambda _3 } \right)=0 \end{aligned}$$
(44)

While \(\lambda _1 \ne \lambda _2 \), according to (36), we will obtain:

$$\begin{aligned} E\left( {\hat{{\lambda }}_1 } \right)&= \lambda _1 \left( {1+\frac{1}{M} {\mathop {\mathop {\sum \limits _{i=1}}\limits _{i\ne 1}}^{N}} {\frac{\lambda _i }{\lambda _1 -\lambda _i }} } \right),\nonumber \\ E\left( {\hat{{\lambda }}_2 } \right)&= \lambda _2 \left( {1+\frac{1}{M} {\mathop {\mathop {\sum \limits _{i=1}}\limits _{i\ne 2}}^{N}} {\frac{\lambda _i }{\lambda _2 -\lambda _i }} } \right), \nonumber \\ E\left( {\hat{{\lambda }}_3 } \right)&= \lambda _3 \left( {1+\frac{1}{M} {\mathop {\mathop {\sum \limits _{i=1}}\limits _{i\ne 3}}^{2}} {\frac{\lambda _i }{\lambda _3 -\lambda _i }} } \right)\nonumber \\&= \lambda _3 \left( {1+\frac{1}{M}\left( {\frac{\lambda _1 }{\lambda _3 -\lambda _1 }+\frac{\lambda _2 }{\lambda _3 -\lambda _2 }} \right)} \right) \end{aligned}$$
(45)

So:

$$\begin{aligned}&E\left( {\hat{{\lambda }}_2 } \right)\times \left( {\lambda _1 -\lambda _3 } \right) = \lambda _2 \left( {1+\frac{1}{M} {\mathop {\mathop {\sum \limits _{i=1}}\limits _{i\ne 2}}^{N}} {\frac{\lambda _i }{\lambda _2 -\lambda _i }} } \right)\nonumber \\&\quad \times \left( {\lambda _1\!-\!\lambda _3 } \right)\!=\!\lambda _2 \times \left( {\lambda _1 \!-\!\lambda _3 } \right)\!+\!\frac{1}{M} {\mathop {\mathop {\sum \limits _{i=1}}\limits _{i\ne 2}}^{N}} {\frac{\lambda _i \!\times \! \lambda _2 \!\times \! \left( {\lambda _1 \!-\!\lambda _3 } \right)}{\lambda _2 \!-\!\lambda _i }} , \nonumber \\&E\left( {\hat{{\lambda }}_3 } \right)\times \left( {\lambda _1 -\lambda _2 } \right) = \lambda _3 \left( {1+\frac{1}{M} {\mathop {\mathop {\sum \limits _{j=1}}\limits _{j\ne 3}}^{N}} {\frac{\lambda _i }{\lambda _3 -\lambda _i }} } \right)\nonumber \\&\quad \times \left( {\lambda _1\!-\!\lambda _2 } \right)\!=\!\lambda _3 \times \left( {\lambda _1 \!-\!\lambda _2 } \right)\!+\!\frac{1}{M} {\mathop {\mathop {\sum \limits _{j=1}}\limits _{j\ne 3}}^{2}} {\frac{\lambda _j \!\times \! \lambda _3 \!\times \! \left( {\lambda _1 \!-\!\lambda _2 } \right)}{\lambda _3 \!-\!\lambda _j }} , \nonumber \\&E\left( {\hat{{\lambda }}_1 } \right)\times \left( {\lambda _2 -\lambda _3 } \right) = \lambda _1 \left( {1+\frac{1}{M} {\mathop {\mathop {\sum \limits _{n=1}}\limits _{n\ne 1}}^{N}} {\frac{\lambda _i }{\lambda _1 -\lambda _i }} } \right)\nonumber \\&\quad \times \left( {\lambda _2 \!-\!\lambda _3 } \right)\!=\!\lambda _1 \!\times \! \left( {\lambda _2 \!-\!\lambda _3 } \right)\!+\!\frac{1}{M} {\mathop {\mathop {\sum \limits _{n=2}}\limits _{n\ne 1}}^{N}} {\frac{\lambda _n \!\times \! \lambda _1 \!\times \! \left( {\lambda _2 \!-\!\lambda _3 } \right)}{\lambda _1 \!-\!\lambda _n }}\nonumber \\ \end{aligned}$$
(46)

And (44) will be:

$$\begin{aligned}&\frac{1}{M} {\mathop {\mathop {\sum \limits _{i\!=\!1}}\limits _{i\ne 2}}^{N}} {\frac{\lambda _i \times \lambda _2 \times \left( {\lambda _1 \!-\!\lambda _3 } \right)}{\lambda _2 \!-\!\lambda _i }} \!-\!\frac{1}{M} {\mathop {\mathop {\sum \limits _{j\!=\!1}}\limits _{j\ne 3}}^{N}} {\frac{\lambda _j \times \lambda _3 \times \left( {\lambda _1 \!-\!\lambda _2 } \right)}{\lambda _3 -\lambda _j }}\nonumber \\&\quad \quad -\frac{1}{M} {\mathop {\mathop {\sum \limits _{n=2}}\limits _{n\ne 1}}^{N}} {\frac{\lambda _n \times \lambda _1 \times \left( {\lambda _2 -\lambda _3 } \right)}{\lambda _1 -\lambda _n }} \nonumber \\&\quad =\frac{1}{M}\left( {\mathop {\mathop {\sum \limits _{i=1}}\limits _{i\ne 2}}^{N}} {\frac{\lambda _i \!\times \! \lambda _2 \!\times \! \left( {\lambda _1 \!-\!\lambda _3 } \right)}{\lambda _2 \!-\!\lambda _i }} \!-\!{\mathop {\mathop {\sum \limits _{n=2}}\limits _{n\ne 1}}^{N}} {\frac{\lambda _n \!\times \! \lambda _1 \!\times \! \left( {\lambda _2 \!-\!\lambda _3 } \right)}{\lambda _1 \!-\!\lambda _n }} \right. \nonumber \\&\quad \quad \left.-\left( {\frac{\lambda _1 }{\lambda _3 -\lambda _1 }+\frac{\lambda _2 }{\lambda _3 -\lambda _2 }} \right)\times \lambda _3 \times \left( {\lambda _1 -\lambda _2 } \right) \right) \end{aligned}$$
(47)

where:

$$\begin{aligned}&{\mathop {\mathop {\sum \limits _{i=1}}\limits _{i\ne 2}}^{N}} {\frac{\lambda _i \times \lambda _2 \times \left( {\lambda _1 -\lambda _3 } \right)}{\lambda _2 -\lambda _i }} \nonumber \\&\quad =\frac{\lambda _1 \times \lambda _2 \times \left( {\lambda _1 -\lambda _3 } \right)}{\lambda _2 -\lambda _1 }+\frac{\lambda _3 \times \lambda _2 \times \left( {\lambda _1 -\lambda _3 } \right)}{\lambda _2 -\lambda _3 }\nonumber \\&\qquad +\frac{\lambda _4 \times \lambda _2 \times \left( {\lambda _1 -\lambda _3 } \right)}{\lambda _2 -\lambda _4 }+\cdots +\frac{\lambda _N \times \lambda _2 \times \left( {\lambda _1 -\lambda _3 } \right)}{\lambda _2 -\lambda _N }\nonumber \\ \end{aligned}$$
(48)

At the same time:\(\lambda _2 -\lambda _3 =\lambda _2 -\lambda _4 =\cdots =\lambda _2 -\lambda _N \). Then (48) will be:

$$\begin{aligned}&{\mathop {\mathop {\sum \limits _{i=1}}\limits _{i\ne 2}}^{N}} {\frac{\lambda _i \times \lambda _2 \times \left( {\lambda _1 -\lambda _3 } \right)}{\lambda _2 -\lambda _i }} =\frac{\lambda _1 \times \lambda _2 \times \left( {\lambda _1 -\lambda _3 } \right)}{\lambda _2 -\lambda _1 }\nonumber \\&\quad +\left( {N-2} \right)\times \frac{\lambda _3 \times \lambda _2 \times \left( {\lambda _1 -\lambda _3 } \right)}{\lambda _2 -\lambda _3 } \end{aligned}$$
(49)

Similarly

$$\begin{aligned}&{\mathop {\mathop {\sum \limits _{n=2}}\limits _{n\ne 1}}^{N}} {\frac{\lambda _n \times \lambda _1 \times \left( {\lambda _2 -\lambda _3 } \right)}{\lambda _1 -\lambda _n }} =\frac{\lambda _2 \times \lambda _1 \times \left( {\lambda _2 -\lambda _3 } \right)}{\lambda _1 -\lambda _2 }\nonumber \\&\quad +\left( {N-2} \right)\times \frac{\lambda _3 \times \lambda _1 \times \left( {\lambda _2 -\lambda _3 } \right)}{\lambda _1 -\lambda _3 } \end{aligned}$$
(50)

At last, (47) will be:

$$\begin{aligned}&\frac{1}{M}\left( {\mathop {\mathop {\sum \limits _{i=1}}\limits _{i\ne 2}}^{N}} {\frac{\lambda _i \times \lambda _2 \times \left( {\lambda _1 -\lambda _3 } \right)}{\lambda _2 -\lambda _i }} -{\mathop {\mathop {\sum \limits _{n=2}}\limits _{n\ne 1}}^{N}} {\frac{\lambda _n \times \lambda _1 \times \left( {\lambda _2 -\lambda _3 } \right)}{\lambda _1 -\lambda _n }} \right. \nonumber \\&\quad \quad \left.-\left( {\frac{\lambda _1 }{\lambda _3 -\lambda _1 }+\frac{\lambda _2 }{\lambda _3 -\lambda _2 }} \right)\times \lambda _3 \times \left( {\lambda _1 -\lambda _2 } \right) \right) \nonumber \\&\quad =\frac{1}{M}\!\left( {\begin{array}{l} \frac{\lambda _1 \times \lambda _2 \times \left( {\lambda _1 -\lambda _3 } \right)}{\lambda _2 -\lambda _1 }\!+\!\left( {N\!-\!2} \right)\!\times \! \frac{\lambda _3 \times \lambda _2 \times \left( {\lambda _1 -\lambda _3 } \right)}{\lambda _2 -\lambda _3 }\!-\!\frac{\lambda _2 \times \lambda _1 \times \left( {\lambda _2 -\lambda _3 } \right)}{\lambda _1 -\lambda _2 } \\ -\left( {N\!-\!2} \right)\!\times \! \frac{\lambda _3 \times \lambda _1 \times \left( {\lambda _2 -\lambda _3 } \right)}{\lambda _1 -\lambda _3 }\!-\!\left( {\frac{\lambda _1 }{\lambda _3 -\lambda _1 }\!+\!\frac{\lambda _2 }{\lambda _3 -\lambda _2 }} \right)\!\times \! \lambda _3 \!\times \! \left( {\lambda _1 \!-\!\lambda _2 } \right) \\ \end{array}} \right) \nonumber \\&\quad =\frac{1}{M}\left( \frac{\lambda _1 \times \lambda _2 \times \left( {\lambda _1 +\lambda _2 -2\lambda _3 } \right)}{\lambda _2 -\lambda _1 }+\left( {N-2} \right)\right.\nonumber \\&\qquad \times \left( {\frac{\lambda _3 \times \lambda _2 \times \left( {\lambda _1 -\lambda _3 } \right)}{\lambda _2 -\lambda _3 }-\frac{\lambda _3 \times \lambda _1 \times \left( {\lambda _2 -\lambda _3 } \right)}{\lambda _1 -\lambda _3 }} \right)\nonumber \\&\qquad \left.-\left( {\frac{\lambda _1 }{\lambda _3 -\lambda _1 }+\frac{\lambda _2 }{\lambda _3 -\lambda _2 }} \right)\times \lambda _3 \times \left( {\lambda _1 -\lambda _2 } \right) \right) \nonumber \\&\quad =\frac{1}{M}\left( \frac{\lambda _1 \times \lambda _2 \times \left( {\lambda _1 +\lambda _2 -2\lambda _3 } \right)}{\lambda _2 -\lambda _1 }+\left( {N-2} \right)\right.\nonumber \\&\qquad \times \left( {\frac{\lambda _3 \times \lambda _2 \times \left( {\lambda _1 -\lambda _3 } \right)^{2}-\lambda _3 \times \lambda _1 \times \left( {\lambda _2 -\lambda _3 } \right)^{2}}{\left( {\lambda _2 -\lambda _3 } \right)\left( {\lambda _1 -\lambda _3 } \right)}} \right)\nonumber \\&\qquad \left.-\left( {\frac{\lambda _1 }{\lambda _3 -\lambda _1 }+\frac{\lambda _2 }{\lambda _3 -\lambda _2 }} \right)\times \lambda _3 \times \left( {\lambda _1 -\lambda _2 } \right) \right) \nonumber \\&\quad =\frac{1}{M}\left( \frac{\lambda _1 \times \lambda _2 \times \left( {\lambda _1 +\lambda _2 -2\lambda _3 } \right)}{\lambda _2 -\lambda _1 }+\left( {N-2} \right)\right.\nonumber \\&\qquad \times \left( {\frac{\lambda _3 \times \left( {\lambda _2 \times \left( {\lambda _1 -\lambda _3 } \right)^{2}-\lambda _1 \times \left( {\lambda _2 -\lambda _3 } \right)^{2}} \right)}{\left( {\lambda _2 -\lambda _3 } \right)\left( {\lambda _1 -\lambda _3 } \right)}} \right)\nonumber \\&\qquad \left.-\left( {\frac{\lambda _1 }{\lambda _3 -\lambda _1 }+\frac{\lambda _2 }{\lambda _3 -\lambda _2 }} \right)\times \lambda _3 \times \left( {\lambda _1 -\lambda _2 } \right) \right) \end{aligned}$$
(51)

where

$$\begin{aligned}&\frac{\lambda _3 \times \left( {\lambda _2 \times \left( {\lambda _1 -\lambda _3 } \right)^{2}-\lambda _1 \times \left( {\lambda _2 -\lambda _3 } \right)^{2}} \right)}{\left( {\lambda _2 -\lambda _3 } \right)\left( {\lambda _1 -\lambda _3 } \right)} \\&\quad = \frac{\lambda _3 \!\times \! \left( {\lambda _2 \!\times \! \left( {\lambda _1^2 \!-\!2\lambda _1 \lambda _3 \!+\!\lambda _3^2 } \right)\!-\!\lambda _1 \!\times \! \left( {\lambda _2^2 \!-\!2\lambda _2 \lambda _3 \!+\!\lambda _3^2 } \right)} \right)}{\left( {\lambda _2 \!-\!\lambda _3 } \right)\left( {\lambda _1\!-\!\lambda _3 } \right)} \\&\quad \!=\! \frac{\lambda _3 \!\times \! \left(\! {\left( {\lambda _2 \lambda _1^2 \!-\!2\lambda _1 \lambda _2 \lambda _3 \!+\!\lambda _2 \lambda _3^2 } \right)\!-\!\left(\! {\lambda _1 \lambda _2^2 \!-\!2\lambda _1 \lambda _2 \lambda _3 \!+\!\lambda _1 \lambda _3^2 } \right)} \!\right)}{\left( {\lambda _2 \!-\!\lambda _3 } \right)\left( {\lambda _1\!-\!\lambda _3 } \right)} \\&\quad =\frac{\lambda _3 \times \left( {\lambda _1 \lambda _2 \left( {\lambda _1 -\lambda _2 } \right)-\lambda _3^2 \left( {\lambda _1 -\lambda _2 } \right)} \right)}{\left( {\lambda _2 -\lambda _3 } \right)\left( {\lambda _1 -\lambda _3 } \right)} \nonumber \\&\quad =\frac{\lambda _3 \times \left( {\lambda _1 -\lambda _2 } \right)\times \left( {\lambda _1 \lambda _2 -\lambda _3^2 } \right)}{\left( {\lambda _2 -\lambda _3 } \right)\left( {\lambda _1 -\lambda _3 } \right)} \end{aligned}$$

So (51) will be:

$$\begin{aligned}&\frac{1}{M}\left( \frac{\lambda _1 \times \lambda _2 \times \left( {\lambda _1 +\lambda _2 -2\lambda _3 } \right)}{\lambda _2 -\lambda _1 }+\left( {N-2} \right) \right.\nonumber \\&\quad \quad \times \left( {\frac{\lambda _3 \times \left( {\lambda _1 -\lambda _2 } \right)\times \left( {\lambda _1 \lambda _2 -\lambda _3^2 } \right)}{\left( {\lambda _2 -\lambda _3 } \right)\left( {\lambda _1 -\lambda _3 } \right)}} \right) \nonumber \\&\quad \quad \left.+\left( {\frac{\lambda _1 \!\times \! \left( {\lambda _2 \!-\!\lambda _3 } \right)\!+\!\lambda _2 \!\times \! \left( {\lambda _1 \!-\!\lambda _3 } \right)}{\left( {\lambda _1 \!-\!\lambda _3 } \right)\left( {\lambda _2\!-\!\lambda _3 } \right)}} \right)\!\times \! \lambda _3 \!\times \! \left( {\lambda _1\!-\!\lambda _2 } \right) \right)\nonumber \\ \end{aligned}$$
(52)

according to (36), set \(t_1 =T_s -t_0 \), then (52) will be:

$$\begin{aligned}&\frac{1}{M}\left( \frac{\lambda _1 \times \lambda _2 \times \left( {\lambda _1 +\lambda _{2} -2\lambda _3 } \right)}{\lambda _2 -\lambda _1 }+\left( {N-2} \right)\right.\nonumber \\&\quad \quad \times \left( {\frac{\lambda _3 \times \left( {\lambda _1 -\lambda _2 } \right)\times \left( {\lambda _1 \lambda _2 -\lambda _3^2 } \right)}{\left( {\lambda _2 -\lambda _3 } \right)\left( {\lambda _1 -\lambda _3 } \right)}} \right)\nonumber \\&\quad \quad \left.+\left( {\frac{\lambda _1 \times \left( {\lambda _2 -\lambda _3 } \right)+\lambda _2 \times \left( {\lambda _1 -\lambda _3 } \right)}{\left( {\lambda _1 -\lambda _3 } \right)\left( {\lambda _2 -\lambda _3 } \right)}} \right)\times \lambda _3 \times \left( {\lambda _1 -\lambda _2 } \right) \right) \\&\quad =\frac{1}{M}\!\left(\! {\begin{array}{l} \frac{\left( {1+\rho \frac{t_1 }{T_e }} \right)\times \left( {1+\rho \frac{t_0 }{T_e }} \right)\times N\rho }{\left( {\rho \frac{t_0 -t_1 }{T_e }} \right)}\!+\!\left( {N\!-\!2} \right)\!\times \! \left( {\frac{\left( {\rho \frac{t_1 -t_0 }{T_e }} \right)\times \left( {N\rho +\rho ^{2}\frac{t_1 t_0 }{T_e }} \right)}{\left( {\rho \frac{t_0 }{T_e }} \right)\left( {\rho \frac{t_1 }{T_e }} \right)}} \right) \\ \quad +\left( {\frac{\left( {1+\rho \frac{t_1 }{T_e }} \right)\times \left( {\rho \frac{t_0 }{T_e }} \right)+\left( {1+\rho \frac{t_0 }{T_e }} \right)\times \left( {\rho \frac{t_1 }{T_e }} \right)}{\left( {\rho \frac{t_0 }{T_e }} \right)\left( {\rho \frac{t_1 }{T_e }} \right)}} \right)\times \left( {\rho \frac{t_1 -t_0 }{T_e }} \right) \\ \end{array}} \!\!\right)\\&\quad \quad \times \, \sigma _n^4 \end{aligned}$$

If and only if:

$$\begin{aligned}&\frac{\left( {1+\rho \frac{t_1 }{T_e }} \right)\times \left( {1+\rho \frac{t_0 }{T_e }} \right)\times N\rho }{\left( {\rho \frac{t_1 -t_0 }{T_e }} \right)}=\ldots \left( {N-2} \right) \\&\quad \quad \times \left( {\frac{\left( {\rho \frac{t_1 -t_0 }{T_e }} \right)\times \left( {N\rho +\rho ^{2}\frac{t_1 }{T_e }\frac{t_0 }{T_e }} \right)}{\left( {\rho \frac{t_0 }{T_e }} \right)\left( {\rho \frac{t_1 }{T_e }} \right)}} \right)\\&\quad \quad +\left( {\frac{\left( {1+\rho \frac{t_1 }{T_e }} \right)\times \left( {\rho \frac{t_0 }{T_e }} \right)+\left( {1+\rho \frac{t_0 }{T_e }} \right)\times \left( {\rho \frac{t_1 }{T_e }} \right)}{\left( {\rho \frac{t_0 }{T_e }} \right)\left( {\rho \frac{t_1 }{T_e }} \right)}} \right)\\&\quad \quad \times \left( {\rho \frac{t_1 -t_0 }{T_e }} \right) \frac{\left( {1+N\rho \frac{t_1 }{T_e }+\rho ^{2}\frac{t_1 }{T_e }\frac{t_0 }{T_e }} \right)\times N}{\left( {\frac{t_1 -t_0 }{T_e }} \right)}=\left( {N-2} \right)\\&\quad \quad \times \left( {\frac{\left( {\frac{t_1 -t_0 }{T_e }} \right)\times \left( {N+\frac{t_1 }{T_e }\frac{t_0 }{T_e }} \right)}{\left( {\frac{t_0 }{T_e }} \right)\left( {\frac{t_1 }{T_e }} \right)}} \right)+\left( {\frac{N+2\rho \frac{t_1 }{T_e }\frac{t_0 }{T_e }}{\left( {\frac{t_0 }{T_e }} \right)\left( {\frac{t_1 }{T_e }} \right)}} \right)\\&\quad \quad \times \left( {\rho \frac{t_1 -t_0 }{T_e }} \right) \end{aligned}$$

\(\hat{{t}}_0 \) is unbiased estimator. And in practical application, it is hard to satisfy the condition.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ren, XT., Xu, H., Huang, ZT. et al. Blind joint information and spreading sequence estimation for short-code DS-SS signal in asynchronous and synchronous systems. SIViP 7, 1183–1194 (2013). https://doi.org/10.1007/s11760-012-0382-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0382-5

Keywords

Navigation