Skip to main content
Log in

Sparsity aware consistent and high precision variable selection

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Variable selection is fundamental while dealing with sparse signals that contain only a few number of nonzero elements. This is the case in many signal processing areas extending from high-dimensional statistical modeling to sparse signal estimation. This paper explores a new and efficient approach to model a system with underlying sparse parameters. The idea is to get the noisy observations and estimate the minimum number of underlying parameters with acceptable estimation accuracy. The main challenge is due to the non-convex optimization problem to be solved. The reconstruction stage deals with some suitable objective function in order to estimate the original sparse signal by performing variable selection procedure. This paper introduces a suitable objective function in order to simultaneously recover the true support of the underlying sparse signal while still achieving an acceptable estimation error. It is shown that the proposed method performs the best variable selection compared to the other algorithms, while approaching the lowest least mean squared error in almost all the cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. According to the discussion in [24], three necessary properties for penalty function of the least squares criterion which result in oracle properties are as follows: (1) unbiasedness, (2) sparsity and (3) continuity. It is shown that Lasso achieves the last two properties, but this comes at the price of shifting the resulting estimator by a constant parameter, thus losing the unbiasedness property.

  2. The idea of locally linear approximation has been successfully used in [29] in order to maximize the penalized likelihood function.

References

  1. Donoho, D.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Candes, E., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chen, S.S., Donoho, D.L., Saunders, M.A.: Atomic decomposition by basis pursuit. SIAM J. Sci. Comput. 20(1), 33–61 (1998)

    Article  MathSciNet  Google Scholar 

  4. Tropp, J.: Greed is good: algorithmic results for sparse approximation. IEEE Trans. Inf. Theory 50(10), 2231–2242 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  5. Li, Y., Osher, S.: Coordinate descent optimization for \(L_{1}\) minimization with application to compressed sensing: greedy algorithm. Inverse Probl Imaging 3(3), 487–503 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cetin, M., Malioutov, D.M., and Willsky, A.S.: A variational technique for source localization based on a sparse signal reconstruction perspective. In: Proc. ICASSP, pp. 2965–2968 (2002)

  7. Candes, E.J., Wakin, M., Boyd, S.: Enhancing sparsity by reweighted L1 minimization. J Fourier Anal Appl 14(5), 877–905 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chartrand, R.: Exact reconstruction of sparse signals via non-convex minimization. IEEE Signal Process. Lett. 14, 707–710 (2007)

    Article  Google Scholar 

  9. Chartrand, R., Yin, W.: Iteratively reweighted algorithms for compressive sensing. In: Proc. ICASSP, Las Vegas, pp. 3869–3872 (2008)

  10. Miosso, C.J., Borries, R.V., Argaez, M., Velazquez, L., Quintero, C., Potes, C.M.: Compressive sensing reconstruction with prior information by iteratively reweighted least-squares. IEEE Trans. Signal Process. 57(6), 2424–2431 (2009)

    Google Scholar 

  11. Benesty, J., Gay, S.L.: An improved PNLMS algorithm. In: Proc. IEEE ICASSP, pp. 1881–1884 (2002)

  12. Duttweiler, D.L.: Proportionate normalized least-mean-squares adaptation in echo cancellers. IEEE Trans. Speech Audio Process. 8, 508–518 (2000)

    Article  Google Scholar 

  13. Gaensler, T., Gay, S.L., Sondhi, M.M., Benesty, J.: Double-talk robust fast converging algorithms for network echo cancellation., IEEE Trans. Speech Audio Process. 8, 656–663 (2000)

    Google Scholar 

  14. Hoshuyama, O., Gubran, R.A., Sugiyama, A.: A generalized proportionate variable step-size algorithm for fast changing acoustic environments. In: Proc. IEEE ICASSP, pp. IV-161–IV-164 (2004)

  15. Benesty, J., Paleologu, C., Ciochina, S.: Proportionate adaptive filters from a basis pursuit perspective. IEEE Signal Process. Lett. 17(12), 985–988 (2010)

    Article  Google Scholar 

  16. Chen, Y., Gu, Y., Hero, A.O.: Sparse LMS for system identification. In: Proc. IEEE ICASSP, pp. 3125–3128 (2009)

  17. Gu, Y., Jin, J., Mei, S.: \(L_{0}\) norm constraint LMS algorithm for sparse system identification. IEEE Signal Process. Lett. 16(9), 774–777 (2009)

    Article  Google Scholar 

  18. Jin, J., Gu, Y., Mei, S.: A stochastic gradient approach on compressive sensing reconstruction based on adaptive filtering framework. IEEE J. Sel. Top. Signal Process. 4(2), 409–420 (2010)

    Article  Google Scholar 

  19. Eksioglu, E.M.: RLS adaptive filtering with sparsity regularization. In: 10th Int. Conf. on Inf. Sci., Signal Process., and their Applications, pp. 550–553 (2010)

  20. Tibshirani, R.: Regression shrinkage and selection via the Lasso. J. R. Stat. Soc. Ser. B 58(1), 267–288 (1996)

    Google Scholar 

  21. Efron, B., Hastie, T., Johnstone, I., Tibshirani, R.: Least angle regression. Ann. Stat. 32, 407–499 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  22. Angelosante, D., Giannakis, G.B.: RLS-weighted Lasso for adaptive estimation of sparse signals. In: Proc. IEEE ICASSP, pp. 3245–3248 (2009)

  23. Angelosante, D., Bazerque, J.A., Giannakis, G.B.: Online adaptive estimation of sparse signals: where RLS meets the \(L_{1}\) norm. IEEE Trans. Signal Process. 58(7), 3436–3447 (2010)

    Article  MathSciNet  Google Scholar 

  24. Fan, J., Li, R.: Variable selection via non-concave penalized likelihood and its oracle properties. J. Am. Stat. Assoc. 96(456), 1348–1360 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Yuan, M., Lin, Y.: On the Nonnegative Garotte Estimator, Technical Report. School of Industrial and Systems Engineering, Georgia Inst. of Tech, Georgia (2005)

    Google Scholar 

  26. Zou, H.: The adaptive Lasso and its oracle properties. J. Am. Stat. Assoc. 101(476), 1418–1429 (2006)

    Article  MATH  Google Scholar 

  27. Zhao, P., Yu, B.: On model selection consistency of Lasso. J. Mach. Learn. Res. 7, 2541–2563 (2006)

    MATH  MathSciNet  Google Scholar 

  28. Knight, K., Fu, W.: Asymptotics for Lasso-type estimators. Ann. Stat. 28, 1356–1378 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Zou, B.H., Li, R.: One-step sparse estimation in non-concave penalized likelihood models. Ann. Stat. 36(4), 1509–1533 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  30. Donoho, D., Johnstone, I.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81, 425–455 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  31. Tinati, M.A., Yousefi Rezaii, T.: Adaptive sparsity-aware parameter vector reconstruction with application to compressed sensing. In: Proc. IEEE HPCS, pp. 350–356 (2011)

  32. Friedman, J., Hastie, T., Hofling, H., Tibshirani, R.: Pathwise coordinate optimization. Ann. Appl. Stat. 1(2), 302–332 (2007)

    Google Scholar 

  33. Ward, R.: Compressed sensing with cross validation. IEEE Trans. Inf. Theory 55(12), 5773–5782 (2009)

    Article  Google Scholar 

  34. Boufounos, P., Duarte, M.F., Baraniuk, R.G.: Sparse signal reconstruction from noisy compressive measurements using cross validation. In: Proc. IEEE Workshop on Statistical, Signal Processing, pp. 299–303 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yousefi Rezaii.

Appendices

Appendix A

In (7), writing the first two terms of the Taylor series expansion of \(\mathcal P _{\tau ,\gamma } \left( {\left| {\theta _{j} } \right|} \right)\) about \(\theta _j^o \), as,

$$\begin{aligned} \mathcal P _{\tau ,\gamma } \left( {\left| {\theta _{j} } \right|} \right)\approx \mathcal P _{\tau ,\gamma } \left( {\left| {\theta _{j}^o } \right|} \right)+\mathcal{P }^{\prime }_{\tau ,\gamma } \left( {\left| {\theta _{j}^o } \right|} \right)\left( {\left| {\theta _j } \right|-\left| {\theta _{j}^o } \right|} \right).\nonumber \\ \end{aligned}$$
(36)

Substituting the approximation (36) into (7), the approximated objective function can be considered as,

$$\begin{aligned} \mathcal{J }\left( {\varvec{\uptheta }} \right)&\!\approx \! \frac{1}{2n}\left\Vert {\mathbf{y}\!-\!\mathbf{X}{\varvec{\uptheta }}} \right\Vert_2^2\nonumber \\&\quad \!+\!\sum _{j\!=\!1}^d {\left[ \mathcal{P _{\tau ,\gamma } \left( {\left| {\theta _{j}^o } \right|} \right) +\mathcal{P }^{\prime }_{\tau ,\gamma } \left( {\left| {\theta _j^o } \right|} \right)\left( {\left| {\theta _j } \right|\,-\,\left| {\theta _{j}^o } \right|} \right)} \right]}.\nonumber \\ \end{aligned}$$
(37)

Finally, excluding the constant terms from (37), the estimator \({\hat{{\varvec{\uptheta }}}}\) is obtained as,

$$\begin{aligned} {\hat{{\varvec{\uptheta }}}}=\mathop {\arg \min }\limits _{\varvec{\uptheta }} \;\;\frac{1}{2n}\left\Vert {\mathbf{y}-\mathbf{X}{\varvec{\uptheta }}} \right\Vert_2^2 +\sum _{j=1}^d {\mathcal{P }^{\prime }_{\tau ,\gamma } \left( {\left| {\theta _{j}^o } \right|} \right)\left| {\theta _j } \right|}. \end{aligned}$$

Appendix B

The term \(Z^{(n)}(\mathbf{u})-Z^{(n)}(\mathbf{0})\) could be written as follows using (16),

$$\begin{aligned} Z^{(n)}(\mathbf{u})\!-\!Z^{(n)}(\mathbf{0})\, =\, \frac{1}{2}\left\Vert {\mathbf{y}\!-\!\mathbf{X}\!\left( {{\varvec{\uptheta }}^{*}\!+\!\frac{\mathbf{u}}{\sqrt{n}}} \right)}\!\right\Vert_2^2 +\frac{1}{2}\left\Vert {\mathbf{y}\!-\!\mathbf{X}{\varvec{\uptheta }}^{*}} \right\Vert_2^2 \\ +\,n\sum _{j=1}^d {\mathcal{P }^{\prime }_{\tau ,\gamma } \left( {\left| {\theta _j^o } \right|} \right)\!\!\left({\left| {\theta _j^*\!+\!\frac{u_j }{\sqrt{n}}} \right|\!-\!\left| {\theta _j^*} \right|} \right)}. \end{aligned}$$

For the sake of notation simplicity, the rightmost term of the above equation is suppressed in the following, since it will remain unchanged. So, we have the following:

$$\begin{aligned}&\frac{1}{2}\left\Vert {\mathbf{y}-\mathbf{X}\left( {{\varvec{\uptheta }}^{*}+\frac{\mathbf{u}}{\sqrt{n}}} \right)} \right\Vert_2^2 +\frac{1}{2}\left\Vert {\mathbf{y}-\mathbf{X}\varvec{\uptheta } ^{*}} \right\Vert_2^2\\&\quad =\frac{1}{2}\left[ {\mathbf{y}-\mathbf{X}\varvec{\uptheta } -\frac{1}{\sqrt{n}}\mathbf{Xu}} \right]^{T}\left[ {\mathbf{y}-\mathbf{X}\varvec{\uptheta }-\frac{1}{\sqrt{n}}\mathbf{Xu}} \right]\\&\qquad -\frac{1}{2}\left[ {\mathbf{y}-\mathbf{X}\varvec{\uptheta } } \right]^{T}\left[ {\mathbf{y}-\mathbf{X}\varvec{\uptheta }} \right]. \end{aligned}$$

After some manipulations, we will have the following:

$$\begin{aligned}&\frac{1}{2}\left\Vert {\mathbf{y}-\mathbf{X}\left( {{\varvec{\uptheta }}^{*}+\frac{\mathbf{u}}{\sqrt{n}}} \right)} \right\Vert_2^2 +\frac{1}{2}\left\Vert {\mathbf{y}-\mathbf{X}\varvec{\uptheta } ^{*}} \right\Vert_2^2\nonumber \\&\quad =\frac{1}{\sqrt{n}}\mathbf{u}^{T}\mathbf{X}^{T}\mathbf{X}\varvec{\uptheta } ^{*}-\frac{1}{\sqrt{n}}\mathbf{u}^{T}\mathbf{X}^{T}\mathbf{y}+\frac{1}{2n}\mathbf{u}^{T}\mathbf{X}^{T}\mathbf{Xu} \nonumber \\&\quad =\frac{-1}{\sqrt{n}}\mathbf{u}^{T}\mathbf{X}^{T}\left( {\mathbf{y}-\mathbf{X}\varvec{\uptheta } ^{*}} \right)+\frac{1}{2}\mathbf{u}^{T}\left( {\frac{1}{n}\mathbf{X}^{T}\mathbf{X}} \right)\mathbf{u}. \end{aligned}$$
(38)

Substituting \(\mathbf{v}=\mathbf{y}-\mathbf{X}\varvec{\uptheta }\) in (\(\text{ B}_{1})\), we have

$$\begin{aligned}&\frac{1}{2}\left\Vert {\mathbf{y}-\mathbf{X}\left( {{\varvec{\uptheta }}^{*}+\frac{\mathbf{u}}{\sqrt{n}}} \right)} \right\Vert_2^2 +\frac{1}{2}\left\Vert {\mathbf{y}-\mathbf{X}\varvec{\uptheta }^{*}} \right\Vert_2^2 =\frac{-1}{\sqrt{n}}\mathbf{u}^{T}\mathbf{X}^{T}\mathbf{v}\nonumber \\&\quad +\frac{1}{2}\mathbf{u}^{T}\left( {\frac{1}{n}\mathbf{X}^{T}\mathbf{X}} \right)\mathbf{u}. \end{aligned}$$
(39)

Knowing that \(\lim _{n\rightarrow \infty } \frac{1}{n}\mathbf{X}^{T}\mathbf{X}=\mathbf{C}\), the second term in the right hand of (\(\text{ B}_{2})\) tends to \(\frac{1}{2}\mathbf{u}^{T}\mathbf{Cu}\) as \(n\) goes to infinity. By using the Slutsky’s theorem and central limit theorem, it is easy to show that the first term in the right hand of (\(\text{ B}_{2})\) tends to a zero-mean normal distribution with covariance matrix of \(\sigma ^{2}\mathbf{C}\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rezaii, T.Y., Tinati, M.A. & Beheshti, S. Sparsity aware consistent and high precision variable selection. SIViP 8, 1613–1624 (2014). https://doi.org/10.1007/s11760-012-0401-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0401-6

Keywords

Navigation