Abstract
Fusion of multiple biometrics combines the strengths of unimodal biometrics to achieve improved recognition accuracy. In this study, face and iris biometrics are used to obtain a robust recognition system by using several feature extractors, score normalization and fusion techniques. Global and local feature extractors are used to extract face and iris features separately, and then, the fusion of these modalities is performed on different subsets of face and iris image databases of ORL, FERET, CASIA and UBIRIS. The proposed method uses Local Binary Patterns local feature extractor and subspace Linear Discriminant Analysis global feature extractor on face and iris images, respectively. Face and iris scores are normalized using tanh normalization, and then, Weighted Sum Rule is applied for the fusion of these two modalities. Improved recognition accuracies are achieved compared to the individual systems and multimodal systems using other local or global feature extractors for both modalities.







Similar content being viewed by others
References
Poursaberi, A., Araabi, B.N.: Iris recognition for partially occluded images: methodology and sensitivity analysis. EURASIP J. Adv. Signal Process. 2007, 36751 (2007)
Liau, H.F., Isa, D.: Feature selection for support vector machine-based face-iris multimodal biometric system. Expert Syst. Appl. 38(9), 11105–11111 (2011)
Proenca, H.P. : Towards non-cooperative biometric iris recognition. PhD thesis, submitted to University of Beira Interior Department of Computer Science (2006)
Daugman, J.G.: High confidence visual recognition of persons by a test of statistical independence. IEEE Trans. Pattern Anal. Mach. Intell. 15(11), 1148–1161 (1993)
Daugman, J.G.: How iris recognition works. IEEE Trans. Circuits Syst. Video Technol. 14(1), 21–30 (2004)
Wang, F., Han, J.: Multimodal biometric authentication based on score level fusion using support vector machine. Opto- Electron. Rev. 17(1), 59–64 (2009)
Wang, Y., Tan, T., Jain, A.K.: Combining face and iris biometric for identity verification. In: Proc. 4th Int. Conf. on Audio- and Video-Based Biometric Person Authentication (AVBPA), pp. 805–813 (2003)
Chen, C., Chu, C.T.: Fusion of face and iris features for multimodal biometrics. In: Proceedings of the International Conference on Advances in Biometrics (ICB’06). Lecture Notes in Computer Science, vol. 3832, pp. 571–580 (2006)
Jain, A., Nandakumar, K., Ross, A.: Score normalization in multimodal biometric systems. Pattern Recognit. 38, 2270–2285 (2005)
Toygar, Ö., Altınçay, H.: Preserving spatial information and overcoming variations in appearance for face recognition. Pattern Anal. Appl. 14(1), 67–75 (2011)
Chen, S., Zhu, Y.: Subpattern-based principle component analysis. Pattern Recognit. 37, 1081–1083 (2004)
Gottumukkal, R., Asari, V.K.: An improved face recognition technique based on modular PCA approach. Pattern Recognit. Lett. 25, 429–436 (2004)
Ahonen, T., Hadid, A., Pietikäinen, M.: Face description with local binary patterns: application to face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(12), 2037–2041 (2006)
Bowyer, K.W., Hollingsworth, K., Flynn, P.J.: Image understanding for iris biometrics: a survey. Comput. Vis. Image Underst. 110(2), 281–307 (2008)
Lumini, A., Nanni, L.: Over-complete feature generation and feature selection for biometry. Expert Syst. Appl. 35, 2049–2055 (2008)
Vatsa, M., Singh, R., Noore, A.: Integrating image quality in 2v-SVM biometric match score fusion. Int. J. Neural Syst. 17(5), 343–351 (2007)
Turk, M., Pentland, A.: Eigenfaces for recognition. J. Cogn. Neurosci. 3(1), 71–86 (1991)
Wang, X., Tang, X.: Random sampling for subspace face recognition. Int. J. Comput. Vis. 70(1), 91–104 (2006)
AT &T Laboratories Cambridge, The ORL Database of Faces. http://www.cam-orl.co.uk/facedatabase.html
Philips, P.J., Wechsler, H., Huang, J., Rauss, P.J.: The FERET database and evaluation procedure for face recognition algorithms. Image Vis. Comput. 16(5), 295–306 (1998)
Pujol, P., Macho, D., Nadeu, C.: On real-time mean-and- variance normalization of speech recognition features. In: Proc. IEEE International Conference on Acoustics, Speech and, Signal Processing (ICASSP), pp. 773–776, May 14–19 (2006)
Adam, M., Rossant, F., Amiel, F., Mikovicova, B., Ea, T.: Reliable eyelid localization for iris recognition. In: Proc. 10th International Conference, Juan-les-Pins, France (ACIVS2008), LNCS 5259, pp. 1062–1070 (2008)
Kerekes, R., Narayanaswamy, B., Thornton, J., Savvides, M., Vijaya Kumar, B.V.K.: Graphical model approach to iris matching under deformation and occlusion. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR ’07), Minneapolis, Minnesota, USA, pp. 1–6, June 17–22 (2007)
UBIRIS Iris Database. http://iris.di.ubi.pt
CASIA-IrisV3. http://www.cbsr.ia.ac.cn/IrisDatabase.htm
Masek, L., Kovesi, P.: MATLAB Source Code for a Biometric Identification System Based on Iris Patterns. The University of Western Australia, The School of Computer Science and Software Engineering (2003)
Hampel, F.R., Ronchetti, E.M., Rousseeuw, P.J., Stahel, W.A.: Robust Statistics: The Approach Based on Influence Functions. Wiley, New York (1986)
Nandakumar, K., Chen, Y., Dass, S.C., Jain, A.K.: Likelihood ratio based biometric score fusion. IEEE Trans. Pattern Anal. Mach. Intell. 30(2), 342–347 (2008)
Jain, A.K., Ross, A.: Learning user-specific parameters in a multibiometric system. In: Proc. International Conference on Image Processing (ICIP), New York, USA, pp. 57–60, Sept 22–25 (2002)
Raghavendra, R., Dorizzi, B., Rao, A., Kumar, G.H.: Designing efficient fusion schemes for multimodal biometric system using face and palmprint. Pattern Recognit. 44(5), 1076–1088 (2011)
Ross, A., Nandakumar, K., Jain, A.K.: Handbook of Multibiometrics. Springer, Berlin (2006)
Kothuru, S., Kailasarao, K.: Automated authentication using information fusion and score normalization in multimodal biometric systems. Int. J. Comput. Sci. Inf. Technol. 2(3), 1240–1243 (2011)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Eskandari, M., Toygar, Ö. Fusion of face and iris biometrics using local and global feature extraction methods. SIViP 8, 995–1006 (2014). https://doi.org/10.1007/s11760-012-0411-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-012-0411-4