Skip to main content
Log in

Zernike moment and local distribution fitting fuzzy energy-based active contours for image segmentation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper presents a new region-based active contour model for extracting the object boundaries in an image, based on techniques of curve evolution. The proposed model introduces an energy functional that involves intensity distributions in local image regions and fuzzy membership functions. The local image intensity distribution information used to guide the motion of the contour, in the paper, is derived by Hueckel operator in the neighborhood of each image point. The parameters of Hueckel operator are estimated by a set of orthogonal Zernike moments before curve evolution. Meanwhile, the fuzzy membership functions are used to measure the association degree of each image pixel to the region outside and inside the contour. To minimize the energy functional, instead of solving the Euler–Lagrange equation of the underlying problem, the paper employs a direct method to compute the energy alterations. As a result, the model can deal with images with intensity inhomogeneity. In addition, the model effectively alleviates the sensitivity to contour initialization. Moreover, the model reduces computational cost, avoids problems associated with choosing time steps as well as allows fast convergence to the segmentation solutions. Experimental results on synthetic, real images and comparisons with other models show the desired performances of the proposed model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Kass, M., Witkin, A., Terzopoulos, D.: Snakes: active contour models. Int. J. Comput. Vis. 1(4), 321–331 (1988)

    Article  Google Scholar 

  2. Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int. J. Comput. Vis. 72(5), 195–215 (2007)

    Article  Google Scholar 

  3. He, L., Peng, Z., Everding, B., Wang, X., Han, C., Weiss, K., Wee, W.G.: A comparative study of deformable contour methods on medical image segmentation. Image Vis. Comput. 26(2), 141–163 (2008)

    Article  Google Scholar 

  4. Bhadauria, H.S., Dewal, M.L.: Intracranial hemorrhage detection using spatial fuzzy c-mean and region-based active contour on brain CT imaging. Signal Image Video Process. (2012). doi:10.1007/s11760-012-0298-0

  5. Jafarian, N., Kazemi, K., Moghaddam, H.A., Grebe, R., Fournier, M., Helfroush, M.S., Gondry-Jouet, C., Wallois, F.: Automatic segmentation of newborns’ skull and fontanel from CT data using model-based variational level set. Signal Image Video Process. (2012). doi:10.1007/s11760-012-0300-x

  6. Chan, T., Vese, L.: Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  7. Osher, S., Sethian, J.A.: Fronts propagating with curvature-dependent speed: algorithms based on Hamilton-Jacobi formulation. J. Comput. Phys. 79(1), 12–49 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  8. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2002)

    Google Scholar 

  9. Caselles, V., Catte, F., Coll, T., Dibos, F.: A geometric model for active contours in image processing. Numer. Math. 66(1), 1–31 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  10. Caselles, V., Kimmel, R., Sapiro, G.: Geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  11. Zhu, S., Yuille, A.: Region competition: Unifying snakes, region growing, and bayes model for multiband image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 18(9), 884–900 (1996)

    Article  Google Scholar 

  12. Piovano, J., Papadopoulo, T.: Local statistics based region segmentation with automatic scale selection. In: Proceedings of European Conference in Computer Vision (ECCV), pp. 486–499 (2008)

  13. Lankton, S., Tannenbaum, A.: Localizing region-based active contours. IEEE Trans. Image Process. 17(11), 2029–2039 (2008)

    Article  MathSciNet  Google Scholar 

  14. Li, C., Kao, C., Gore, J., Ding, Z.: Minimization of region-scalable fitting energy for image segmentation. IEEE Trans. Image Process. 17(10), 1940–1949 (2008)

    Article  MathSciNet  Google Scholar 

  15. He, L., Zheng, S., Wang, L.: Integrating local distribution information with level set for boundary extraction. J. Vis. Commun. Image Represent. 21(4), 343–354 (2010)

    Article  Google Scholar 

  16. Mumford, D., Shah, J.: Optimal approximations by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42(5), 577–685 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  17. Yezzi, A., Tsai, A., Willsky, A.: A fully global approach to image segmentation via coupled curve evolution equations. J. Vis. Commun. Image Represent. 13(1), 195–216 (2002)

    Article  Google Scholar 

  18. Michailovich, O., Rathi, Y., Tannenbaum, A.: Image segmentation using active contours driven by the Bhattacharyya gradient flow. IEEE Trans. Image Process. 15(11), 2787–2810 (2007)

    Article  MathSciNet  Google Scholar 

  19. Rousson, M., Deriche, R.: A variational framework for active and adaptive segmentation of vector valued images. In: Proceedings of IEEE Workshop on Motion and Video Computing (2002)

  20. Xu, N., Ahuja, N.: Object contour tracking using graph cuts based active contours. In: Proceedings of IEEE International Conference on Computer Vision, Rochester, New York, USA, pp. 277–280 (2002)

  21. Xu, N., Ahuja, N., Bansal, R.: Object segmentation using graph cuts based active contours. Comput. Vis. Image Understand. 107(3), 210–224 (2007)

    Google Scholar 

  22. Gibou, F., Fedkiw, R.: A fast hybrid k-means level set algorithm for segmentation. In: Proceedings of 4th Annual Hawaii International Conference on Statistics and Mathematics, Honolulu, Hawaii, USA, pp. 281–291 (2005)

  23. Chen, Z., Qui, T., Ruan, S.: Fuzzy adaptive level set algorithm for brain tissue segmentation. In: Proceedings of International Conference Signal Processing, Beijing, China, pp. 1047–1050 (2008)

  24. Krinidis, S., Chatzis, V.: Fuzzy energy-based active contour. IEEE Trans. Image Process. 18(12), 2747–2755 (2009)

    Article  MathSciNet  Google Scholar 

  25. Sum, K.W., Cheung, P.Y.S.: Vessel extraction under non-uniform illumination: a level set approach. IEEE Trans. Biomed. Eng. 55(1), 358–360 (2008)

    Article  Google Scholar 

  26. Shyu, K.K., Pham, V.T., Tran, T.T., Lee, P.L.: Unsupervised active contours driven by density distance and local fitting energy with applications to medical image segmentation. Mach. Vis. Appl. 23(6), 1159–1175 (2012)

    Article  Google Scholar 

  27. Rosenhahn, B., Brox, T., Weickert, J.: Three-dimensional shape knowledge for joint image segmentation and pose tracking. Int. J. Comput. Vis. 73(3), 242–262 (2007)

    Article  Google Scholar 

  28. Brox, T., Cremers, D.: On the statistical interpretation of the piecewise smooth Mumford-Shah functional. In: Proceedings of Scale Space and Variational Methods in Computer Vision (SSVM07), Ischia, Italy, pp. 203–213 (2007)

  29. Song, B., Chan, T.: A Fast Algorithm for Level Set Based Optimization. UCLA CAM Report 02-68 (2002)

  30. Lyvers, E.P., Mitchell, O.R., Akey, M.L., Reeves, A.P.: Subpixel measurements using a moment-based edge operator. IEEE Trans. Pattern Anal. Mach. Intell. 11(12), 1293–1309 (1989)

    Article  Google Scholar 

  31. Hueckel, M.: An operator which locates edges in digitized pictures. J. ACM 18(1), 113–125 (1971)

    Article  MATH  Google Scholar 

  32. Wee, C.-Y., Paramesran, R.: On the computational aspects of Zernike moments. Image Vis. Comput. 25(6), 967–980 (2007)

    Article  Google Scholar 

  33. Ghosal, S., Mehrotra, R.: A moment-based unified approach to image feature detection. IEEE Trans. Image Process. 6(6), 781–793 (1997)

    Article  Google Scholar 

  34. He, L., Osher, S.: Solving the Chan-Vese model by a multiphase level set algorithm based on the topological derivative level set algorithm based on the topological derivative. UCLA CAM Report 06-56 (2006)

  35. Pan, Y., Birdwell, D.J., Djouadi, S.M.: Efficient implementation of the Chan-Vese models without solving PDEs. In: Proceedings of International Workshop On Multimedia Signal Processing, Victoria, BC, Canada, pp. 350–353 (2006)

  36. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  37. Zhang, L., Jiang, M., Yang, M.: An improved local distribution fitting model. In: 3rd International congress on Image and Signal Processing (CISP2010), Yantai, China, pp. 1322–1326 (2010)

Download references

Acknowledgments

The authors would like to thank the National Science Council of Taiwan for supporting this research under the Grant No.NSC-100-2221-E-008-005. They would like to thank the reviewers and the editor for their valuable comments and suggestions, which have greatly helped in improving the content of this paper. Thi-Thao Tran would like to thank the National Central University for providing scholarship for her study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kuo-Kai Shyu.

Appendix 1

Appendix 1

This section presents the numerical approximation of the alternations in the old and new energy, given in Eq. 17.

Let us consider an image point \(P\)in the given image \(I\). Assume that the intensity value of point \(P\) is \(I_o\), and the corresponding degree of membership for this image point to outside of contour \(C\) is \(u_o\). Suppose that we change the degree of membership of point \(P\) to the new value \(u_n\), which is calculated from Eq. 16. From Eq. (13), we observe that a change in the degree of membership of point \(P\) will cause a change in the model energy. The new energy of the model \(\tilde{F}\) is given as:

$$\begin{aligned} \tilde{F}&\!=\!&\lambda _1 \underbrace{\sum _\Omega {\sum _\Omega {\omega (\mathbf{x}\!-\!\mathbf{y})\left[ {I(\mathbf{y})\!-\!f_1 (\mathbf{x})} \right]^{2}} } [\tilde{u}(\mathbf{y})]^{m}}_{\tilde{C}} \nonumber \\&+\,\lambda _2 \underbrace{\sum _\Omega {\sum _\Omega {\omega (\mathbf{x}\!-\!\mathbf{y})\left[ {I(\mathbf{y})\!-\!f_2 (\mathbf{x})} \right]^{2}} } [1\!-\!\tilde{u}(\mathbf{y})]^{m}}_{\tilde{D}} \end{aligned}$$
(19)

where \(\tilde{C}\)and \(\tilde{D}\)are calculated as:

$$\begin{aligned} \tilde{C}&\!=\!&\sum _\Omega {\sum _\Omega {\omega (\mathbf{x}\!-\!\mathbf{y})\left[ {I(\mathbf{y})\!-\!f_1 (\mathbf{x})} \right]^{2}} } [\tilde{u}(\mathbf{y})]^{m} \nonumber \\&= \sum _\Omega {\sum _\Omega {\omega (\mathbf{x}\!-\!\mathbf{y})\left[ {I(\mathbf{y})\!-\!f_1 (\mathbf{x})} \right]^{2}} } [u(\mathbf{y})]^{m}\nonumber \\&+\sum _\Omega {\sum _\Omega {\omega (\mathbf{x}\!-\!\mathbf{y})\left[ {I_o\!-\!f_1 (\mathbf{x})} \right]^{2}} } \left[ {u_n^m -u_o^m } \right] \end{aligned}$$
(20)
$$\begin{aligned} \tilde{D}&= \sum _\Omega {\sum _\Omega {\omega (\mathbf{x}\!-\!\mathbf{y})\left[ {I(\mathbf{y})\!-\!f_2 (\mathbf{x})} \right]^{2}} } [1\!-\!\tilde{u}(\mathbf{y})]^{m} \nonumber \\&= \sum _\Omega {\sum _\Omega {\omega (\mathbf{x}\!-\!\mathbf{y})\left[ {I(\mathbf{y})\!-\!f_2 (\mathbf{x})} \right]^{2}} } [1\!-\!u(\mathbf{y})]^{m} \nonumber \\&+\sum _\Omega {\!\sum _\Omega {\omega (\mathbf{x}\!-\!\mathbf{y})\left[\! {I_o\!-\!f_2 (\mathbf{x})}\! \right]^{2}} } \left[\!{(1\!-\!u_n )^{m}\!-\!(1\!-\!u_o )^{m}}\!\right]\nonumber \\ \end{aligned}$$
(21)

Combining (19), (20), and (21), the new energy of the local model is given by:

$$\begin{aligned} \tilde{F}&\!=\!&\lambda _1 \sum _\Omega {\sum _\Omega {\omega (\mathbf{x}\!-\!\mathbf{y})\left[ {I(\mathbf{y})\!-\!f_1 (\mathbf{x})} \right]^{2}} } [u(\mathbf{y})]^{m}\nonumber \\&+\,\lambda _2 \sum _\Omega {\sum _\Omega {\omega (\mathbf{x}\!-\!\mathbf{y})\left[ {I(\mathbf{y})\!-\!f_2 (\mathbf{x})} \right]^{2}} } [1\!-\!u(\mathbf{y})]^{m} \nonumber \\&+\lambda _1 \sum _\Omega {\sum _\Omega {\!\omega (\mathbf{x}\!-\!\mathbf{y})\left[ {I_o\!-\!f_1 (\mathbf{x})} \right]^{2}} } \left[ {u_n^m\!-\!u_o^m } \right]\nonumber \\&+\lambda _2 \sum _\Omega {\sum _\Omega {\omega (\mathbf{x}\!-\!\mathbf{y})\left[ {I_o\!-\!f_2 (\mathbf{x})} \right]^{2}} } \left[ (1\!-\!u_n )^{m}\right.\nonumber \\&\left.-\,(1-u_o)^{m} \right] \nonumber \\&= F + \Delta F \end{aligned}$$
(22)

where

$$\begin{aligned} F&= \lambda _1 \sum _\Omega {\sum _\Omega {\omega (\mathbf{x}-\mathbf{y})\left[ {I(\mathbf{y})-f_1 (\mathbf{x})} \right]^{2}} } [u(\mathbf{y})]^{m}\nonumber \\&+\,\lambda _2 \sum _\Omega {\sum _\Omega {\omega (\mathbf{x}-\mathbf{y})\left[ {I(\mathbf{y})-f_2 (\mathbf{x})} \right]^{2}} } [1-u(\mathbf{y})]^{m}\nonumber \\ \end{aligned}$$
(23)

and

$$\begin{aligned} \Delta F&= \lambda _1 \sum _\Omega {\sum _\Omega {\omega (\mathbf{x}-\mathbf{y})\left[ {I_o -f_1 (\mathbf{x})} \right]^{2}} } \left[ {u_n^m -u_o^m } \right] \nonumber \\&+\lambda _2 \sum _\Omega {\sum _\Omega {\omega (\mathbf{x}-\mathbf{y})\left[ {I_o -f_2 (\mathbf{x})} \right]^{2}} } \left[ (1-u_n )^{m}\right.\nonumber \\&\left.-(1-u_o )^{m} \right] \end{aligned}$$
(24)

\(\Delta F\) is the change energy when changing the degree of membership in the energy functional in Eq.(13).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tran, TT., Pham, VT. & Shyu, KK. Zernike moment and local distribution fitting fuzzy energy-based active contours for image segmentation. SIViP 8, 11–25 (2014). https://doi.org/10.1007/s11760-012-0415-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-012-0415-0

Keywords

Navigation