Abstract
This paper presents the fractional order model of a nonlinear autonomous continuous-time difference-differential equation with only one variable. Numerical simulation results of the fractional order model demonstrate the existence of chaos when system order \(q\ge 0.2\). Values of the delay time \(\tau \) in which chaotic behavior is observed at system order \(q\) are quantitatively defined using the largest Lyapunov exponents obtained from the output time series.







Similar content being viewed by others
References
Oldham, K., Spainer, J.: Fractional Calculus. Academic Press, New York (1974)
Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific, New Jersey (2000)
Oustaloup, A., Levron, F., Mathieu, B., Nanot, F.M.: Frequency-band complex noninteger differentiator: characterization and synthesis. IEEE Trans. CAS-I 47, 25–39 (2000)
Moon, F.C.: Chaotic and Fractal Dynamics. Wiley, New York (1992)
Schweppe, F.C.: Uncertain Dynamic Systems. Prentice-Hall Int. Inc, Englewood Cliffs (1977)
Hartley, T.T., Lorenzo, C.F., Qammer, H.K.: Chaos in a fractional order Chua’s system. IEEE Trans. CAS-I 42, 485–490 (1995)
Arena, P., Fortuna, L., Porto, D.: Chaotic behavior in noninteger-order cellular neural networks. Phys. Rev. E 61, 776–781 (2000)
Ahmad, W.M., Sprott, J.C.: Chaos in fractional-order autonomous nonlinear systems. Chaos Solitons Fract. 16, 339–351 (2003)
Li, C., Chen, G.: Chaos and hyperchaos in the fractional-order Rössler equations. Phys. A 341, 55–61 (2004)
Li, C., Peng, G.: Chaos in Chen’s system with a fractional order. Chaos Solitons Fract. 22, 443–450 (2004)
Li, C., Chen, G.: Chaos in the fractional-order Chen system and its control. Chaos Solitons Fract. 22, 549–554 (2004)
Sheu, L.J., Chen, H.K., Chen, J.H., Tam, L.M.: Chaos in a new system with fractional order. Chaos Solitons Fract. 31, 1203–1212 (2007)
Lu, J.G., Chen, G.: A note on the fractional-order Chen system. Chaos Solitons Fract. 27, 985–988 (2006)
Jun-Guo, L.: Chaotic dynamics of the fractional-order Ikeda delay system and its synchronization. Chin. Phys. 15, 301–305 (2006)
Wang, D., Yu, J.: Chaos in the Fractional Order Logistic Delay System, pp. 646–651. ICCCAS, China (2008)
Zhu, H., Zhou, S., Zhang, W.: Chaos and Synchronization of Time-Delayed Fractional Neuron Network System, pp. 2937–2941. ICYCS, China (2008)
Çelik, V., Demir, Y.: Chaotic fractional order delayed cellular neural network. In: Baleanu, D., Guvenc, Z.B., Tenreiro Machado, J.A. (eds.), New Trends in Nanotechnology and Fractional Calculus Applications, Springer, 313–320 (2010)
Uçar, A., Bishop, S.R.: Chaotic behaviour in a nonlinear delay system. Int. J. Nonlinear Sci. Num. Sim. 2, 289–294 (2001)
Uçar, A.: A prototype model for chaos studies. Int. J. Eng. Sci. 40, 251–258 (2002)
Uçar, A.: On the chaotic behavior of a prototype delayed dynamical system. Chaos Solitons Fract. 16, 187–194 (2003)
Bhalekar, S.: Dynamical analysis of fractional order Uçar prototype delayed system. Signal Image Video Process. 6, 513–519 (2012)
Charef, A., Sun, H.H., Tsao, Y.Y., Onaral, B.: Fractal system as represented by singularity function. IEEE Trans. Autom. Control 37, 1465–1470 (1992)
Diethelm, K., Ford, N.J.: Analysis of fractional differential equations. J. Math. Anal. 265, 229–248 (2002)
Diethelm, K., Ford, N.J., Freed, A.D.: A predictor-corrector approach for the numerical solution of differential equations. Nonlinear Dyn. 29, 3–22 (2002)
Sun, K., Wang, X., Sprott, J.C.: Bifurcations and chaos in fractional-order simplified Lorenz system. Int. J. Bifurcation Chaos 20, 1209–1219 (2010)
Aoun, M., Malti, R., Levron, F., Oustaloup, A.: Numerical simulations of fractional systems: an overview of existing methods and improvements. Nonlinear Dyn. 38, 117–131 (2004)
Wolf, A., Swift, J.B., Swinney, H.L., Vastano, J.A.: Determining Lyapunov exponents from time series. Phys. D 16, 285–317 (1985)
Rosenstein, M.T., Collins, J.J., De Luca, C.J.: A practical method for calculating largest Lyapunov exponents from small data sets. Phys. D 65, 117–134 (1993)
Hilborn, R.C.: Chaos and Nonlinear Dynamics. Oxford University Press, New York (2000)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Çelik, V., Demir, Y. Chaotic dynamics of the fractional order nonlinear system with time delay. SIViP 8, 65–70 (2014). https://doi.org/10.1007/s11760-013-0461-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-013-0461-2