Skip to main content
Log in

Multiresolution analysis and orthogonal wavelets associated with fractional wavelet transform

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The fractional wavelet transform (FRWT), which generalizes the classical wavelet transform, has been shown to be potentially useful for signal processing. Many fundamental results of this transform are already known, but the theory of multiresolution analysis and orthogonal wavelets is still missing. In this paper, we first develop multiresolution analysis associated with the FRWT and then derive a construction of orthogonal wavelets for the FRWT. Several fractional wavelets are also presented. Moreover, some applications of the derived results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ozaktas, H.M., Zalevsky, Z., Kutay, M.A.: The Fractional Fourier Transform with Applications in Optics and Signal Processing. Wiley, New York (2000)

    Google Scholar 

  2. Almeida, L.B.: The fractional Fourier transform and time-frequency representations. IEEE Trans. Signal Process. 42, 3084–3091 (1994)

    Article  Google Scholar 

  3. Xia, X.-G., Owechko, Y., Soffer, B.H., Matic, R.M.: On generalized-marginal time-frequency distributions. IEEE Trans. Signal Process. 44, 2882–2886 (1996)

    Article  Google Scholar 

  4. Pei, S.-C., Ding, J.J.: Relations between fractional operations and time-frequency distributions, and their applications. IEEE Trans. Signal Process. 49, 1638–1655 (2001)

    Article  MathSciNet  Google Scholar 

  5. Subramaniam, S.R., Ling, B.W.-K., Georgakis, A.: Filtering in rotated time-frequency domains with unknown noise statistics. IEEE Trans. Signal Process. 60, 489–493 (2012)

    Article  MathSciNet  Google Scholar 

  6. Xia, X.-G.: On bandlimited signals with fractional Fourier transform. IEEE Signal Process. Lett. 3, 72–74 (1996)

    Article  Google Scholar 

  7. Martone, M.: A multicarrier system based on the fractional Fourier transform for time-frequency-selective channels. IEEE Trans. Commun. 46, 1011–1020 (2001)

    Article  Google Scholar 

  8. Shi, J., Chi, Y., Zhang, N.: Multichannel sampling and reconstruction of bandlimited signals in fractional Fourier domain. IEEE Signal Process. Lett. 17, 909–912 (2010)

    Google Scholar 

  9. Shi, J., Sha, X., Song, X., Zhang, N.: Generalized convolution theorem associated with fractional Fourier transform. Wirel. Commun. Mob. Comput. (2012). doi:10.1002/wcm.2254

  10. Bhandari, A., Marziliano, P.: Sampling and reconstruction of sparse signals in fractional Fourier domain. IEEE Signal Process. Lett. 17, 221–224 (2010)

    Article  Google Scholar 

  11. Bhandari, A., Zayed, A.I.: Shift-invariant and sampling spaces associated with the fractional Fourier transform domain. IEEE Trans. Signal Process. 60, 1627–1637 (2012)

    Article  MathSciNet  Google Scholar 

  12. Sejdić, E., Djurović, I., Stanković, L.: Fractional Fourier transform as a signal processing tool: an overview of recent developments. Signal Process. 91, 1351–1369 (2011)

    Article  MATH  Google Scholar 

  13. Stanković, L., Alieva, T., Bastiaans, M.J.: Time-frequency signal analysis based on the windowed fractional Fourier transform. Signal Process. 83, 2459–2468 (2003)

    Article  MATH  Google Scholar 

  14. Tao, R., Lei, Y., Wang, Y.: Short-time fractional Fourier transform and its applications. IEEE Trans. Signal Process. 58, 2568–2580 (2010)

    Article  MathSciNet  Google Scholar 

  15. Shinde, S., Gadre, V.M.: An uncertainty principle for real signals in the fractional Fourier transform domain. IEEE Trans. Signal Process. 49, 2545–2548 (2001)

    Article  MathSciNet  Google Scholar 

  16. Shi, J., Liu, X., Zhang, N.: On uncertainty principle for signal concentrations with fractional Fourier transform. Signal Process. 92, 2830–2836 (2012)

    Article  Google Scholar 

  17. Mendlovic, D., Zalevsky, Z., Mas, D., García, J., Ferreira, C.: Fractional wavelet transform. Appl. Opt. 36, 4801–4806 (1997)

    Article  Google Scholar 

  18. Shi, J., Zhang, N., Liu, X.: A novel fractional wavelet transform and its applications. Sci. China Inf. Sci. 55, 1270–1279 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  19. Prasad, A., Mahato, A.: The fractional wavelet transform on spaces of type S. Integral Transform. Spec. Funct. 23, 237–249 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  20. Chen, L., Zhao, D.: Optical image encryption based on fractional wavelet transform. Opt. Commun. 254, 361–367 (2005)

    Article  Google Scholar 

  21. Bhatnagar, G., Raman, B.: Encryption based robust watermarking in fractional wavelet domain. Rec. Adv. Mult. Sig. Process. and Commun. 231, 375–416 (2009)

    Article  Google Scholar 

  22. Taneja, N., Raman, B., Gupta, I.: Selective image encryption in fractional wavelet domain. Int. J. Electron. Commun. 65, 338–344 (2011)

    Article  Google Scholar 

  23. Daubechies, I.: Ten Lectures on Wavelets. Society for Industrial and Applied Mathematics, Philadelphia (1992)

    Book  MATH  Google Scholar 

  24. Christensen, O.: An Introduction to Frames and Riesz Bases. Birkhäuser, Boston (2003)

    Book  MATH  Google Scholar 

  25. Zayed, A.I.: On the relationship between the Fourier and the fractional Fourier transforms. IEEE Signal Process. Lett. 3, 310–311 (1996)

    Article  Google Scholar 

  26. Erseghe, T., Kraniauskas, P., Cariolaro, G.: Unified fractional Fourier transform and sampling theorem. IEEE Trans. Signal Process. 47, 3419–3423 (1999)

    Article  MATH  Google Scholar 

  27. Flandrin, P.: Time-frequency and chirps. Proc. SPIE 4391, 161–175 (2001)

    Article  Google Scholar 

  28. Sharma, K.K., Joshi, S.D.: Time delay estimation using fractional Fourier transform. Signal Process. 87, 853–865 (2007)

    Article  MATH  Google Scholar 

  29. Tao, R., Li, X.-M., Li, Y.-L., Wang, Y.: Time delay estimation of chirp signals in the fractional Fourier transform. IEEE Trans. Signal Process. 57, 2852–2855 (2009)

    Article  MathSciNet  Google Scholar 

  30. Cowell, D.M.J., Freear, S.: Separation of overlapping linear frequency modulated (LFM) signals using the fractional Fourier transform. IEEE Trans. Ultrason. Ferr. 57, 2324–2333 (2010)

    Article  Google Scholar 

Download references

Acknowledgments

This work was completed in parts while Shi J. was visiting the Department of Electrical and Computer Engineering, University of Delaware, Newark, DE 19716 USA. The work was supported in part by the National Basic Research Program of China (Grant No. 2013CB329003), and the National Natural Science Foundation of China (Grant No. 61171110).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shi, J., Liu, X. & Zhang, N. Multiresolution analysis and orthogonal wavelets associated with fractional wavelet transform. SIViP 9, 211–220 (2015). https://doi.org/10.1007/s11760-013-0498-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-013-0498-2

Keywords

Navigation