Abstract
In this paper, we investigate a new approach for a block-based lossless image compression using arithmetic coding. The conventional arithmetic encoders encode and decode images pixel by pixel in raster scan order by using a statistical model which provides probabilities for the whole source symbols to be encoded. However, in the proposed scheme, the arithmetic encoders encode an image block by block from left to right, and block-row by block-row from top to bottom. The proposed model estimates the probability distribution of each block by exploiting the high correlation between neighboring image blocks. Therefore, the probability distribution of each block of pixels is estimated by minimizing the Kullback–Leibler distance between the exact probability distribution of that block and the probability distributions of its neighboring blocks in causal order. The results of comparative experiments show significant improvements over conventional arithmetic encoders in both static and adaptive order-0 models, reducing the bitrate by an average of 15.5 and 16.4 % respectively.
Similar content being viewed by others
References
Abramson, N.: Information Theory and Coding. McGraw-Hill Book Company, Inc., New York, NY (1963)
Carpentieri, B.: A new lossless image compression algorithm based on arithmetic coding. In: Proceedings of the 9th International Conference on Image Analysis and Processing, vol. II, pp. 54–61 (1997)
Golchin, F., Paliwal, K.: A lossless image coder with context classification, adaptive prediction and adaptive entropy coding. In: Proceedings of IEEE International Conference on Acoustics Speech and, Signal Processing, pp. 2545–2548 (1998)
Howard, P.G., Vitter, J.S.: Arithmetic Coding for Data Compression. Proc. IEEE 82(6), 857–865 (1994)
Kullback, S., Leibler, R.A.: On information and sufficiency. Ann. Math. Stat. 22, 49–86 (1951)
Kuroki, N., Manabe, T., Numa, M.: Adaptive arithmetic coding for image prediction errors. In: Proceedings of IEEE International Symposium on Circuits and Systems (ISCAS 04), vol. III, pp. 961–964 (2004)
Langdon, G.G.: An introduction to arithmetic coding. IBM J. Res. Dev. 28(2), 135–149 (1984)
Masmoudi, A., Puech, W., Bouhlel, M.S.: Efficient adaptive arithmetic coding based on updated probability distribution for lossless image compression. J. Electron. Imaging 19(2), 023,014 (2010)
Matsuda, I., Shirai, N., Itoh, S.: Lossless coding using predictors and arithmetic code optimized for each image. In: Proceedings of International Workshop Visual Content Processing and Representation, vol. 2849, pp. 199–207 (2003)
Moffat, A., Neal, R.M., Witten, I.H.: Arithmetic coding revisited. ACM Trans. Inf. Syst. 16(3), 256–294 (1998)
Salomon, D.: Data Compression: The Complete Reference, 4th edn. Springer, Berlin (2007)
Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)
Witten, I.H., Neal, R.M., Cleary, J.G.: Arithmetic coding for data compression. Commun. ACM 30(6), 520–540 (1987)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Masmoudi, A., Masmoudi, A. A new arithmetic coding model for a block-based lossless image compression based on exploiting inter-block correlation. SIViP 9, 1021–1027 (2015). https://doi.org/10.1007/s11760-013-0531-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-013-0531-5