Skip to main content
Log in

Adaptive blind calibration of timing offsets in a two-channel time-interleaved analog-to-digital converter through Lagrange interpolation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

This paper introduces an adaptive blind calibration structure for the compensation of timing offsets in a two-channel time-interleaved analog-to-digital converter through Lagrange interpolation filters. By using Lagrange interpolation filters as reconstruction filters, we can exploit slight over-sampling to estimate timing offsets by using the least-mean-square algorithm. Utilizing the estimated timing offsets, we can compensate timing offset mismatches. We show the efficiency of the calibration structure by the simulations, where we compare the results with the other calibration methods from the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Conroy, C.S., Cline, D.W., Gray, P.R.: An 8-b 85-MS/s parallel pipeline A/D converter in 1-T m CMOS. IEEE J. Solid-State Circuits 28(4), 447–454 (1993)

    Article  Google Scholar 

  2. Nakamura, K., Hotta, M., Carley, L.R., Allstot, D.J.: An 85 mW, 10b, 40 Msample/s CMOS parallel-pipelined ADC. IEEE J. Solid-State Circuits 30(3), 173–183 (1995)

    Article  Google Scholar 

  3. Fu, D., Dyer, K.C., Lewis, S.H., Hurst, P.J.: A digital background calibration technique for time-interleaved analog-to-digital converters. IEEE J. Solid-State Circuits 33(12), 1904–1911 (1998)

    Article  Google Scholar 

  4. Jamal, S.M., Fu, D., Chang, N.C.-J., Hurst, P.J., Lewis, S.H.: A 10-b 120-msample/s time-interleaved analog-to-digital converter with digital background calibration. IEEEJ. Solid-State Circuits 37(12), 1618–1627 (2002)

    Article  Google Scholar 

  5. Poulton, K., Neff, R., Muto, A., Liu, W., Burstein, A., Heshami, M.: A 4 Gsample/s 8b ADC 0.35 m CMOS. In: Presented at the: Digital Technology Seminar on Solid State, San Francisco, CA, USA, Feb. 21–22 (2002)

  6. Poulton, K., Neff, R., Setterberg, B., Wuppermann, B., Kopley, T., Jewett, R., Pernillo, J., Tan, C., Montijo, A.: A 20 GS/s 8b ADC with a 1MB memory in 0.18mCMOS. In: Presented at the: Digital Technology Seminar on Solid State, San Francisco, CA, USA, Feb. 21–22 (2003)

  7. Black, W.C., Hodges, D.A.: Time-interleaved converter arrays. IEEE J. Solid-State Circuits 15(6), 1024–1029 (1980)

    Google Scholar 

  8. Saleem, S., Vogel, C.: Adaptive blind background calibration of polynomial-represented frequency response mismatches in a two-channel time-interleaved ADC. In: IEEE Transactions on Circuits and Systems I: Regular Papers, Accepted for publication (2010)

  9. Huang, S., Levy, B.C.: Adaptive blind calibration of timing offset and gain mismatch for two-channel time-interleaved ADCs. IEEE J. Circuits Syst. 53(6), 1280–1283 (2006)

    Google Scholar 

  10. Johansson, H., Löwenborg, P.: Reconstruction of nonuniformly sampled bandlimited signals by means of digital fractional delay filters. IEEE Trans. Signal Process. 50(11), 2757–2767 (2002)

    Article  Google Scholar 

  11. Strohmer, T., Tanner, J.: Fast reconstruction methods for bandlimited functions from periodic nonuniform sampling. SIAM J. Numer. Anal. 44(3), 1073–1094 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Johansson, H., Löwenborg, P.: Reconstruction of nonuniformly sampled bandlimited signals by Means of time-varying discrete-time FIR filters. EURASIP J. Appl. Signal Process. Article ID 64185, 1–18 (2006)

    Article  Google Scholar 

  13. Prendergast, R.S., Levy, B.C., Hurst, P.J.: Reconstruction of bandlimited periodic nonuniformly sampled signals through multirate filter banks. IEEE Trans. Circuits Syst. I. Fundam. Theory. Appl. 51(8), 1612–1622 (2004)

    Article  MathSciNet  Google Scholar 

  14. Elbornsson, J., Gustafsson, F., Eklund, J.: Blind equalization of time errors in a time-interleaved ADC system. IEEE Trans. Signal Process. 51, 1413–1424 (2005)

    Google Scholar 

  15. Seo, M., Rodwell, M. J. W., Madhow, U.: A low computation adaptive blind mismatch correction for time-interleaved ADCs. IEEE J. Signal Process (2006)

  16. Huang, S., Levy, B.C.: Blind calibration of timing offsets for four-channel time-interleaved ADCs. IEEE J. Circuits Syst. 54(4), 866–871 (2007)

    Google Scholar 

  17. Vaidyanathan, P.P.: Multirate Systems and Filter Banks, Ch. 10. Prentice Hall, Englewood Cliffs (1993)

    Google Scholar 

  18. Strohmer, T., Tanner, J.: Fast reconstruction algorithms for periodic nonuniform sampling with applications to time-interleaved ADCs. In: Proceedings of the IEEE International Conference on Acoustics Speech Signal Processing (2007)

  19. Selva, J.: Design of barycentric interpolators for uniform and nonuniform sampling grids. IEEE Trans. Signal Process. 58(3), 1618–1627 (2010)

    Article  MathSciNet  Google Scholar 

  20. Selva, J.: Functionally weighted Lagrange interpolation of bandlimited signals from nonuniform samples. IEEE Trans. Signal Process. 57(1), 168–181 (2009)

    Article  MathSciNet  Google Scholar 

  21. Johansson, H., Löwenborg, P., Vengattaramane, K.: Least-squares and minmax design of polynomial impulse response FIR filters for reconstruction of two-periodic nonuniformly sampled signals. IEEE Trans. Circuit Syst. I. 54(4), 877–888 (2007)

    Article  Google Scholar 

  22. Johansson, H., Löwenborg, P.: Least-squares filter design technique for the compensation of frequency response mismatch errors in time-interleaved analog-to-digital converters. IEEE Trans. Circuits Syst. II. 55(11), 1154–1158 (2008)

    Article  Google Scholar 

  23. Vogel, C., Mendel, S.: A flexible and scalable structure to compensate frequency response mismatches in time-interleaved ADCs. IEEE Trans. Circuits Syst. I: Regul. Pap. 56(11), 2463–2475 (2009)

    Article  MathSciNet  Google Scholar 

  24. Tertinek, S., Vogel, C.: Reconstruction of nonuniformly sampled bandlimited signals using a differentiator-multiplier cascade. IEEE Trans. Circuits Syst. I: Regul. Pap. 55(8), 2273–2286 (2008)

    Article  MathSciNet  Google Scholar 

  25. Johansson, H.: A polynomial-based time-varying filter structure for the compensation of frequency-response mismatch errors in time-interleaved ADCs. IEEE J. Sel. Top.iSignal Process. (Special issue on DSP techniques for RF/Analog Circuit Impairments) 3(3), 384–396 (2009)

    Article  Google Scholar 

  26. Yu-Sheng, L., An, Q.: Calibration of time-skew error in a M-channel time-interleaved analog-to-digital converters. In: Presented at the: Electronic Measurement and Instruments, pp. 968–970 (2007)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arash Shahmansoori.

Appendix: First-order approximation of discrete-time Lagrange reconstruction filters

Appendix: First-order approximation of discrete-time Lagrange reconstruction filters

The first-order approximations for discrete-time Lagrange reconstruction filters presented in (7) and (8), in channels zero and one, respectively, are computed in this part. Starting from (5), and assuming

$$\begin{aligned}&\cos \frac{\pi }{2}\delta _{1}\approx 1\end{aligned}$$
(39)
$$\begin{aligned}&\sin \frac{\pi }{2}\delta _{1}\approx \frac{\pi }{2}\delta _{1}, \end{aligned}$$
(40)

leads to

$$\begin{aligned} \frac{\sin \frac{\pi }{2}(n-1-\delta _{1})}{\sin \frac{\pi }{2}(-1-\delta _{1})}\approx \cos \frac{\pi }{2}(n-\delta _{1}). \end{aligned}$$
(41)

Simplifying (41), and using (39) and (40), we obtain

$$\begin{aligned} \cos \frac{\pi }{2}(n-\delta _{1})\approx \cos \frac{\pi }{2}n+\frac{\pi }{2}\delta _{1}\sin \frac{\pi }{2}n. \end{aligned}$$
(42)

Replacing (42) instead of the second term of (5), presented in (41), results in (7). Note that the first term in (5) represents a LPF, \(l_{p}[n]\), defined in (9). The first term in (6) is a low-pass fractional delay filter, with the cutoff frequency at \(\omega _{c}=\frac{\pi }{2}\), which can be approximated by a first-order Taylor expansion. To do so, we start from the discrete-time Fourier transform (DTFT) of the first term in (6) as follows.

$$\begin{aligned} \hbox {DTFT}[2\frac{\sin \frac{\pi }{2}(n-1-\delta _{1})}{\pi (n-1-\delta _{1})}]=2e^{-j\omega (1+\delta _{1})}, \end{aligned}$$
(43)

for \(|\omega |\le \frac{\pi }{2}\). Therefore, the DTFT of the first term in (6) can be approximated using first-order Taylor expansion

$$\begin{aligned} 2e^{-j\omega (1+\delta _{1})}\approx 2e^{-j\omega }-j\omega 2\delta _{1}e^{-j\omega }, \end{aligned}$$
(44)

for \(|\omega |\le \frac{\pi }{2}\). Taking the inverse DTFT, IDTFT, of the two terms in (44) leads to

$$\begin{aligned}&\hbox {IDTFT}[2e^{-j\omega }]=l_{p}[n-1]\end{aligned}$$
(45)
$$\begin{aligned}&\hbox {IDTFT}[-j\omega 2\delta _{1}e^{-j\omega }]=\delta _{1}d[n-1] \end{aligned}$$
(46)

where \(l_{p}[n]\) and \(d[n]\) are defined in (9) and (10), respectively. Therefore, the first term in (6) can be approximated as

$$\begin{aligned} 2\frac{\sin \frac{\pi }{2}(n-1-\delta _{1})}{\pi (n-1-\delta _{1})}\approx l_{p}[n-1]+\delta _{1}d[n-1]. \end{aligned}$$
(47)

Finally, replacing (47) instead of the first term in (6) and replacing the denominator of the second term in (6), \(\sin \frac{\pi }{2}(1+\delta _{1})=\cos \frac{\pi }{2}\delta _{1}\), using (39) result in (8).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahmansoori, A. Adaptive blind calibration of timing offsets in a two-channel time-interleaved analog-to-digital converter through Lagrange interpolation. SIViP 9, 1047–1054 (2015). https://doi.org/10.1007/s11760-013-0536-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-013-0536-0

Keywords

Navigation