Abstract
Edge detection is an important step for finding the discontinuities of images and detecting the boundaries of objects. This work presents a novel algorithm for image edge detection using ant colony optimization and Fisher ratio (F ratio)-based techniques. Ants generally search the food from the nest to the food source in the way that maximizes the intensity of pheromone (a chemical secretion). The proposed technique considers that the movements of the artificial ants are steered by the local intensity variation in the image pixel. The directions of ants movements in the image are determined using a direction probability matrix, computed by pheromone and heuristic information of possible directions. In this work, F ratio technique is utilized to determine the optimum threshold value from updated pheromone matrix. This threshold value is further used to extract binary edge map from pheromone matrix. The experiment is conducted on the different test images, i.e., Cameraman, Lena, Coins, Peppers, House and Pillsetc image. The proposed edge detection algorithm is evaluated on the basis of statistical parameters such as kappa, figure of merit, Baddeley’s delta metric and Hausdorff distance, and the experimental results show that the proposed method performs better as compared to earlier reported techniques in most of the cases.









Similar content being viewed by others
Abbreviations
- \(p_{ij}^{(n)}\) :
-
The probability of the ant movement from node \(i\) to \(j\) at \(n\)th construction step
- \({\tau _{ij}^{(n - 1)}}\) :
-
The pheromone information value at edge \((i,j)\) within \(n\)th construction step
- \(\Omega _i\) :
-
The neighborhood nodes of node \(i\)
- \({{\eta }_{ij}}\) :
-
The heuristic information at edge \((i,j)\)
- \(\alpha ,\beta \) :
-
The weighing factors for pheromone and heuristic information
- \({\tau _{ij}^{(n)}}\) :
-
The pheromone information value at edge \((i,j)\) after completing the \(n\)th construction step of all ants
- \(\varphi \) :
-
The pheromone decay coefficient
- \({\tau _{0}}\) :
-
The initial value of the pheromone
- \(\rho \) :
-
The evaporation rate
- \(\Delta _{ij}^{(k)}\) :
-
The amount of pheromone laid on edge \((i,j)\) by \(k\)th ant
- \(I\) :
-
The image whose edge to be detected
- \(K\) :
-
Number of ants
- \(N\) :
-
Number of construction steps
- \(M1\times M2\) :
-
The dimension of input image \(I\)
- \(\tau ^{(0)}\) :
-
The initial pheromone matrix
- \(\tau _\mathrm{init}\) :
-
The initial value of each component of the pheromone matrix
- \(\tau _\mathrm{min}\) :
-
The minimum value of pheromone information
- \(\eta _{i,j}\) :
-
The heuristic matrix information at pixel \((i,j)\)
- \(c\) :
-
The clique matrix
- \(I_{i,j}\) :
-
The image pixel intensity at pixel coordinate \((i,j)\)
- \(V_c (I_{i,j})\) :
-
The functional value of local group of pixels \(c\) at pixel \((i,j)\)
- \(Z\) :
-
The normalization factor
- \(L\) :
-
The number of ants movement steps within each construction step
- \(p_{(l,m),(i,j)}^{(n)}\) :
-
The probability of the ant movement from the pixel \((l,m)\) to pixel \((i,j)\) at \(n\)th construction step
- \(\tau _{i,j}^{(n - 1)}\) :
-
The value of pheromone matrix at pixel \((i,j)\) within \(n\)th construction step
- \(\Omega _{(l,m)}\) :
-
The neighborhood of pixel \((l,m)\)
- \(\Delta _{i,j}^{(k)}\) :
-
The amount of pheromone laid at pixel \((i,j)\), visited by \(k\)th ant
- \({\tau _{i,j}^{(n)}}\) :
-
The value of pheromone matrix at pixel \((i,j)\) after completing \(n\)th construction step of all ants
- \({\tau _{i,j}^{(0)} }\) :
-
The initial pheromone value at pixel \((i,j)\)
- \(T\) :
-
The threshold value between cluster 1 and cluster 2
- \(F\text {ratio}_{\,T}\) :
-
The value of Fisher ratio for threshold value \(T\)
- \(\mu _{1T},\mu _{2T}\) :
-
The means of cluster 1 and cluster 2
- \(v_{1T},v_{2T}\) :
-
The variances of cluster 1 and cluster 2
- \(C_1,C_2\) :
-
The clusters of pheromone matrix consist of all data points having intensity level below and above \(T\)
- \(T^*\) :
-
The optimum threshold value between \(C_1\) and \(C_2\)
- \(k(I_1,I_2)\) :
-
The kappa parameter for images \(I_1\) and \(I_2\)
- \(F\) :
-
Figure of merit
- \(I_I,I_A\) :
-
The number of ideal and actual edge points of image \(I\)
- \(d(i)\) :
-
The pixel miss distance of the \(i\)th edge detected
- \(\alpha _f\) :
-
Scaling constant
- \(H(A,B)\) :
-
The Hausdorff distance between set \(A\) and set \(B\)
References
Han, X.-H., Chen, Y.-W.: A robust method based on ICA and mixture sparsity for edge detection in medical images. Signal Image Video Process. 5(1), 39–47 (2011)
Rajeswari, R., Rajesh, R.: A modified ant colony optimization based approach for image edge detection. In: International Conference on Image Information Processing (ICIIP) Nov. 3–5, pp. 1–6 (2011)
Verma, O., Sharma, R.: An optimal edge detection using universal law of gravity and ant colony algorithm. In: World Congress on Information and Communication Technologies (WICT) Dec. 11–14, pp. 507–511 (2011)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal Mach Intell 8(6), 679–698 (1986)
Gonzalez, R.C., Woods, R.E.: Digital Image Processing. Addison-Wesley, MA (1992)
Maini, R., Sohal, J.S.: Performance evaluation of prewitt edge detector for noisy images. ICGST Int. J. Graph. Vis. Image Process. 6(3), 39–46 (2006)
Marr, D., Hildreth, E.: Theory of edge detection. Proc. R. Soc. Lond. B 207(1167), 187–217 (1980)
Roberts, L.G.: Machine Perception of 3-D Solids. MIT Press, Cambridge (1965)
Yuksel, M.: Edge detection in noisy images by neuro-fuzzy processing. AEU Int. J. Electron. Commun. 61(2), 82–89 (2007)
Sao, A.K., Yegnanarayana, B.: Edge extraction using zero-frequency resonator. Signal Image Video Process. 6(2), 287–300 (2012)
Verma, O.P., Hanmandlu, M., Kumar, P., Chhabra, S., Jindal, A.: A novel bacterial foraging technique for edge detection. Pattern Recognit. Lett. 32(8), 1187–1196 (2011)
Dorigo, M., Stützle, T.: Ant Colony Optimization. The MIT Press, Cambridge (2004)
Dorigo, M., Birattari, M., Stützle, : Ant colony optimization: artificial ants as a computational intelligence technique. IEEE Comput. Intell. Mag. 1(4), 28–39 (2006)
Xiao, P., Li, J., Li, J.-P.: An improved ant colony optimization algorithm for image extracting. In: International Conference on Apperceiving Computing and Intelligence Analysis (ICACIA). Dec. 17–19, pp. 248–252 (2010)
Dorigo, M., Maniezzo, V., Colorni, A.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst Man Cybern. Part B 26(1), 29–41 (1996)
Stützle, T., Hoos, H.H.: MAX-MIN ant system. Futur. Gener. Comput. Syst. 16(8), 889–914 (2000)
Dorigo, M., Gambardella, L.: Ant colony system: a cooperative learning approach to the traveling salesman problem. IEEE Trans. Evolut. Comput. 1(1), 53–66 (1997)
Saha, G., Senapati, S., Chakroborty, S.: An F-Ratio based optimization on noisy data for speaker recognition application. In: IEEE Indicon Conference pp. 352–355 (2005)
Lu, D.-S., Chen, C.-C.: Edge detection improvement by ant colony optimization. Pattern Recognit. Lett. 29(4), 416–425 (2008)
Yang, J., Zhuang, Y.: An improved ant colony optimization algorithm for solving a complex combinatorial optimization problem. Appl. Soft Comput. 10(2), 653–660 (2010)
Tian, J., Yu, W., Xie, S.: An ant colony optimization algorithm for image edge detection. In: IEEE World Congress on Evolutionary Computation pp. 751–756 (2008)
Stützle, T., Hoos, H.: MAX-MIN ant system and local search for the traveling salesman problem. In: Proceedings of the IEEE International Conference on Evolutionary Computation. Apr. 13–16, pp. 309–314 (1997)
Verma, O.P., Hanmandlu, M., Sultania, A.K., Dhruv: A novel fuzzy ant system for edge detection. In: Proceedings of the 9th IEEE/ACIS International Conference on Computer and Information Science Aug. 18–20, pp. 228–233 (2010)
Nezamabadi-pour, H., Saryazdi, S., Rashedi, E.: Edge detection using ant algorithms. Soft Comput. Fus. Found. Methodol. Appl. 10(7), 623–628 (2006)
Yitzhaky, Y., Peli, E.: A method for objective edge detection evaluation and detector parameter selection. IEEE Trans. Pattern Anal. Mach. Intell. 25(8), 1027–1033 (2003)
Bryant, D.J., Bouldin, D.W.: Evaluation of edge operators using relative and absolute grading. In: Proceedings of the IEEE Computer Society Conference on Pattern Recognition and Image Processing, Chicago, pp. 138–145 (1979)
Cohen, J.: A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 20(1), 37–46 (1960)
Abdou, I., Pratt, W.: Quantitative design and evaluation of enhancement/thresholding edge detectors. Proc. IEEE 67(5), 753–763 (1979)
Baddeley, A.J.: An error metric for binary images. Robust Comput. Vis.: Qual. Vis. Algorithms pp. 59–78 (1992)
Huttenlocher, D., Klanderman, G., Rucklidge, W.: Comparing images using the hausdorff distance. IEEE Trans. Pattern Anal. Mach. Intell. 15(9), 850–863 (1993)
Ben-David, A.: About the relationship between ROC curves and Cohen’s kappa. Eng. Appl. Artif. Intell. 21(6), 874–882 (2008)
Vieira, S., Kaymak, U., Sousa, J.: Cohen’s kappa coefficient as a performance measure for feature selection. In: IEEE International Conference on Fuzzy Systems (FUZZ), pp. 1–8 (2010)
Baddeley, A.J.: Errors in binary images and an Lp version of the Hausdorff metric. Nieuw Arch. Wiskunde 10, 157–183 (1992)
Gang, L., Haralick, R.M.: Two practical issues in Canny’s edge detection implementation. In: Proceedings of the 15th International Conference on Pattern Recognition, vol. 3, 676–678 (2000)
Mao, K.: RBF neural network center selection based on Fisher ratio class separability measure. IEEE Trans. Neural Netw. 13(5), 1211–1217 (2002)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Ari, S., Ghosh, D.K. & Mohanty, P.K. Edge detection using ACO and F ratio. SIViP 8, 625–634 (2014). https://doi.org/10.1007/s11760-013-0569-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-013-0569-4