Abstract
A new enhancement technique based on fuzzy intensity measure is proposed in this study to address problems in non-uniform illumination and low contrast often encountered in recorded images. The proposed algorithm, namely adaptive fuzzy intensity measure, is capable of selectively enhancing dark region without increasing illumination in bright region. A fuzzy intensity measure is calculated to determine the intensity distribution of the original image and distinguish between bright and dark regions. Image illumination is improved, whereas local contrast of the image is increased to ensure detail preservation. Implementation of the proposed technique on grayscale and color images with non-uniform illumination images shows that in most cases (i.e., except for processing time), the proposed technique is superior compared with other state-of-the-art techniques. The proposed technique produces images with homogeneous illumination. In addition, the proposed method is computationally fast (i.e., \(<\)1 s) and thus can be utilized in real-time applications.









Similar content being viewed by others
Notes
In the GC approach, the value of gamma is chosen based on the optimization procedure as presented in Sect. 4. However, for this approach, the gamma values are incremented from 0.1 to 1.0 and gamma value that produces the maximum \(Q\) is chosen as the optimum value of gamma.
References
Bumbaca, F., Smith, K.C.: A practical approach to image restoration for computer vision. Comput. Vis. Graph. Image Process. 42(2), 220–233 (1988)
Huang, K.-Q., Wang, Q., Wu, Z.-Y.: Natural color image enhancement and evaluation algorithm based on human visual system. Comput. Vis. Image Underst. 103(1), 52–63 (2006)
Chan, F.W.Y.: Measurement sensitivity enhancement by improved reflective computer vision technique for non-destructive evaluation. NDT & E Int. 43(3), 210–215 (2010)
Xue-bo, J., Hai-jiang, Z., Jing-jing, D., Ya-ming, W.: S-Retinex brightness adjustment for night-vision image. Procedia Eng. 15, 2571–2576 (2011)
Shieh, W.-Y., Huang, J.-C.: Falling-incident detection and throughput enhancement in a multi-camera video-surveillance system. Med. Eng. Phys. 34(7), 954–963 (2012)
Kim, S., Shin, J., Paik, J.: Real-time iterative framework of regularized image restoration and its application to video enhancement. Real-Time Imaging 9(1), 61–72 (2003)
Wu, Y., Sun, Y., Zhang, H.: A fast video illumination enhancement method based on simplified VEC model. Procedia Eng. 29, 3668–3673 (2012)
Bhaskar, H., Singh, S.: Live cell imaging: a computational perspective. J. Real-Time Image Process. 1(3), 195–212 (2007)
Feng, J., Xiong, N., Yang, L., Yang, Y.: A low distortion image enhancement scheme based on multi-resolutions analysis in next generation network. Multimed. Tools Appl. 56(2), 227–243 (2012)
Hasikin, K., Isa, N.A.M.: Fuzzy enhancement for nonuniform illumination of microscopic Sprague Dawley rat sperm image. In: Medical Measurements and Applications Proceedings (MeMeA), 2012 IEEE International Symposium on, pp. 1–6 (2012)
Kimori, Y.: Mathematical morphology-based approach to the enhancement of morphological features in medical images. J. Clin. Bioinform. 1(1), 33 (2011)
Mittal, D., Kumar, V., Saxena, S., Khandelwal, N., Kalra, N.: Enhancement of the ultrasound images by modified anisotropic diffusion method. Med. Biol. Eng. Comput. 48(12), 1281–1291 (2010)
Shiraishi, J., Li, Q., Appelbaum, D., Doi, K.: Computer-aided diagnosis and artificial intelligence in clinical imaging. Semin. Nucl. Med. 41(6), 449–462 (2011)
Shiraishi, J., Li, Q., Appelbaum, D., Pu, Y., Doi, K.: Development of a computer-aided diagnostic scheme for detection of interval changes in successive whole-body bone scans. Med. Phys. 34(1), 25–36 (2007)
Lasaponara, R., Masini, N.: Image enhancement, feature extraction and geospatial analysis in an archaeological perspective. In: Lasaponara, R., Masini, N. (eds.) Satellite Remote Sensing. Remote Sensing and Digital Image Processing, vol. 16, pp. 17–63. Springer, Netherlands (2012)
Pan, X.-B., Brady, M., Bowman, A.K., Crowther, C., Tomlin, R.S.O.: Enhancement and feature extraction for images of incised and ink texts. Image Vis. Comput. 22(6), 443–451 (2004)
Ryu, C., Kong, S.G., Kim, H.: Enhancement of feature extraction for low-quality fingerprint images using stochastic resonance. Pattern Recognit. Lett. 32(2), 107–113 (2011)
Islam, M.R., Sayeed, M.S., Samraj, A.: Technology review: image enhancement, feature extraction and template protection of a fingerprint authentication system. J. Appl. Sci. 10(14), 1397–1404 (2010)
Baradarani, A., Jonathan Wu, Q.M., Ahmadi, M.: An efficient illumination invariant face recognition framework via illumination enhancement and DD-DTWT filtering. Pattern Recognit. 46(1), 57–72 (2013)
Chen, T., Wotao, Y., Xiang Sean, Z., Comaniciu, D., Huang, T.S.: Total variation models for variable lighting face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 28(9), 1519–1524 (2006)
Eleyan, A., Ozkaramanli, H., Demirel, H.: Dual-tree and single-tree complex wavelet transform based face recognition. In: Signal Processing and Communications Applications Conference, 2009. SIU 2009. IEEE 17th, 9–11 April 2009 2009, pp. 536–539
Yun, E.-K., Cho, S.-B.: Adaptive fingerprint image enhancement with fingerprint image quality analysis. Image Vis. Comput. 24(1), 101–110 (2006)
Bal, U., Engin, M., Utzinger, U.: A multiresolution approach for enhancement and denoising of microscopy images. SIViP. (2013). doi:10.1007/s11760-013-0510-x
González, R.C., Woods, R.E.: Digital Image Processing. Prentice Hall, Englewood Cliffs, NJ (2002)
Cherifi, D., Beghdadi, A., Belbachir, A.H.: Color contrast enhancement method using steerable pyramid transform. SIViP 4(2), 247–262 (2010)
Hanmandlu, M., Jha, D.: An optimal fuzzy system for color image enhancement. IEEE Trans. Image Process 15(10), 2956–2966 (2006)
Qing, W., Ward, R.K.: Fast image/video contrast enhancement based on weighted thresholded histogram equalization. IEEE Trans. Consum. Electron 53(2), 757–764 (2007)
Chen Hee, O., Isa, N.A.M.: Quadrants dynamic histogram equalization for contrast enhancement. IEEE Trans. Consum. Electron. 56(4), 2552–2559 (2010)
Chen Hee, O., Isa, N.A.M.: Adaptive contrast enhancement methods with brightness preserving. IEEE Trans. Consum. Electron. 56(4), 2543–2551 (2010)
Sen, D., Pal, S.K.: Automatic exact histogram specification for contrast enhancement and visual system based quantitative evaluation. IEEE Trans. Image Process. 20(5), 1211–1220 (2011)
Joung-Youn, K., Lee-Sup, K., Seung-Ho, H.: An advanced contrast enhancement using partially overlapped sub-block histogram equalization. IEEE Trans. Circuits Syst. Video Technol. 11(4), 475–484 (2001)
Chao, W., Zhongfu, Y.: Brightness preserving histogram equalization with maximum entropy: a variational perspective. IEEE Trans. Consum. Electron. 51(4), 1326–1334 (2005)
Sengee, N., Sengee, A., Heung-Kook, C.: Image contrast enhancement using bi-histogram equalization with neighborhood metrics. IEEE Trans. Consum. Electron. 56(4), 2727–2734 (2010)
Ibrahim, H., Kong, N.S.P.: Brightness preserving dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(4), 1752–1758 (2007)
Lim, S., Isa, N.M., Ooi, C., Toh, K.: A new histogram equalization method for digital image enhancement and brightness preservation. SIViP. (2013). doi:10.1007/s11760-013-0500-z
Thomas, G., Flores-Tapia, D., Pistorius, S.: Histogram specification: a fast and flexible method to process digital images. IEEE Trans. Instrum. Meas. 60(5), 1565–1578 (2011)
Wang, C., Peng, J., Ye, Z.: Flattest histogram specification with accurate brightness preservation. Image Process. IET 2(5), 249–262 (2008)
Abdullah-Al-Wadud, M., Kabir, M.H., Dewan, M.A.A., Oksam, C.: A dynamic histogram equalization for image contrast enhancement. IEEE Trans. Consum. Electron. 53(2), 593–600 (2007)
Duan, J., Bressan, M., Dance, C., Qiu, G.: Tone-mapping high dynamic range images by novel histogram adjustment. Pattern Recognit. 43(5), 1847–1862 (2010)
Land, E.: The retinex. Am. Sci. 52(2), 247–264 (1964)
Bai, X., Zhou, F., Xue, B.: Image enhancement using multi scale image features extracted by top-hat transform. Opt. Laser Technol. 44(2), 328–336 (2012)
Eschbach, R.: Image-dependent exposure enhancement, Google Patents (1995)
Pal, S.K., King, R.A.: Image enhancement using smoothing with fuzzy sets. IEEE Trans. Syst. Man Cybern. 11(7), 494–501 (1981)
Chen, H.-C., Wang, W.-J.: Efficient impulse noise reduction via local directional gradients and fuzzy logic. Fuzzy Sets Syst. 160(13), 1841–1857 (2009)
Cheng, H.D., Xu, H.: A novel fuzzy logic approach to mammogram contrast enhancement. Inf. Sci. 148(1–4), 167–184 (2002)
Sheet, D., Garud, H., Suveer, A., Mahadevappa, M., Chatterjee, J.: Brightness preserving dynamic fuzzy histogram equalization. IEEE Trans. Consum. Electron. 56(4), 2475–2480 (2010)
Hanmandlu, M., Verma, O.P., Kumar, N.K., Kulkarni, M.: A novel optimal fuzzy system for color image enhancement using bacterial foraging. IEEE Trans. Instrum. Meas. 58(8), 2867–2879 (2009)
Verma, O.P., Kumar, P., Hanmandlu, M., Chhabra, S.: High dynamic range optimal fuzzy color image enhancement using Artificial Ant Colony System. Appl. Soft Comput. 12(1), 394–404 (2012)
Vlachos, I., Sergiadis, G., Melin, P., Castillo, O., Aguilar, L., Kacprzyk, J., Pedrycz, W.: The role of entropy in intuitionistic fuzzy contrast enhancement foundations of fuzzy logic and soft computing. In: Lecture Notes in Computer Science, vol. 4529, pp. 104–113. Springer, Berlin (2007)
Vlachos, I.K., Sergiadis, G.D.: Parametric indices of fuzziness for automated image enhancement. Fuzzy Sets Syst. 157(8), 1126–1138 (2006)
Cheng, H.D., Chen, J.-R.: Automatically determine the membership function based on the maximum entropy principle. Inf. Sci. 96(3–4), 163–182 (1997)
Hasikin, K., Isa, N.A.M.: Enhancement of the low contrast image using fuzzy set theory. In: Computer Modelling and Simulation (UKSim), 2012 UKSim 14th International Conference on, 28–30 March 2012, pp. 371–376 (2012)
Hasikin, K., Isa, N.A.M.: Adaptive fuzzy contrast factor enhancement technique for low contrast and nonuniform illumination images. SIViP. (2012). doi:10.1007/s11760-012-0398-x
Aarnink, R., Pathak, S.D., de la Rosette, J.J.M.C.H., Debruyne, F.M.J., Kim, Y., Wijkstra, H.: Edge detection in prostatic ultrasound images using integrated edge maps. Ultrasonics 36(1–5), 635–642 (1998)
Toet, A., Lucassen, M.P.: A new universal colour image fidelity metric. Displays 24(4–5), 197–207 (2003)
Jain, A.K.: Fundamentals of Digital Image Processing. Prentice Hall, Englewood Cliffs, NJ (1989)
Author information
Authors and Affiliations
Corresponding author
Additional information
This project is supported by the Ministry of Science, Technology & Innovation Malaysia through Sciencefund Grant entitled “Development of Computational Intelligent Infertility Detection System based on Sperm Motility Analysis”.
Appendices
Appendix 1
Appendix 2
Appendix 3
1.1 Quantitative analysis for grayscale images
Appendix 4
1.1 Quantitative analysis for color images
Rights and permissions
About this article
Cite this article
Hasikin, K., Mat Isa, N.A. Adaptive fuzzy intensity measure enhancement technique for non-uniform illumination and low-contrast images. SIViP 9, 1419–1442 (2015). https://doi.org/10.1007/s11760-013-0596-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-013-0596-1