Skip to main content

Advertisement

Log in

Energy-based adaptive matching pursuit algorithm for binary sparse signal reconstruction in compressed sensing

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Compressed sensing gains great attention in the field of signal reconstruction. In order to deal with some practical cases in which the sparsity levels are unknown, this paper proposes an energy-based adaptive matching pursuit (EAMP) algorithm for binary sparse signal reconstruction in the compressed sensing framework. The EAMP algorithm inherits the feature of the sparsity adaptive matching pursuit algorithm, which increases the estimated sparsity level when the energy of the observation residue increases. Meanwhile, the proposed algorithm introduces the measurement vector into the signal reconstruction process. It uses two kinds of step sizes to increase the estimated sparsity level when the energy of the estimated candidate signal is less than half of that of the measurement vector. The experimental results indicate that the proposed EAMP algorithm provides better reconstruction performance than other greedy algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Notes

  1. The reconstruction results of the CoSaMP are similar to those of the SP in the setup, so CoSaMP is not included in the simulations.

References

  1. Candès, E.J., Tao, T.: Near-optimal signal recovery from random projections: universal encoding strategies. IEEE Trans. Inf. Theory 52(12), 5406–5425 (2006)

    Article  Google Scholar 

  2. Candès, E.J., Romberg, J., Tao, T.: Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information. IEEE Trans. Inf. Theory 52(2), 489–509 (2006)

    Article  MATH  Google Scholar 

  3. Çetin, A.E.: Reconstruction of signals from Fourier transform samples. Signal Process. 16, 129–148 (1989)

    Article  MathSciNet  Google Scholar 

  4. Çetin, A.E., Ansari, R.: Signal recovery from wavelet transform maxima. IEEE Trans. Signal Process. 42–1, 194–196 (1994)

    Article  Google Scholar 

  5. Purkait, P., Chanda, B.: Morphologic gain-controlled regularization for edge-preserving super-resolution image reconstruction. Signal Image Video Process. 7(5), 925–938 (2013)

    Article  Google Scholar 

  6. Petrović, P.B.: New method and circuit for processing of band-limited periodic signals. Signal Image Video Process. 6(1), 109–123 (2012)

    Article  Google Scholar 

  7. Candès, E.J., Wakin, M.B.: An introduction to compressive sampling. IEEE Signal Process. Mag. 25(2), 21–30 (2008)

    Article  Google Scholar 

  8. Tsaig, Y., Donoho, D.L.: Extensions of compressed sensing. Signal Process. 86(3), 533–548 (2006)

    Article  MATH  Google Scholar 

  9. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Bi, X., Chen, X.D.: Image compressed sensing based on wavelet transform in contourlet domain. Signal Process. 91(5), 1085–1092 (2011)

    Article  Google Scholar 

  11. Qu, X.B., Guo, D., Ning, B.D., Hou, Y.K., Lin, Y.L., Cai, S.H., Chen, Z.: Undersampled MRI reconstruction with patch-based directional wavelets. Magn. Reson. Imaging 30(7), 964–977 (2012)

    Article  Google Scholar 

  12. Balouchestani, M., Raahemifar, K., Krishnan, S.: Low sampling rate algorithm for wireless ECG systems based on compressed sensing theory. Signal Image Video Process. (2013). doi:10.1007/s11760-013-0476-8

  13. Meng, J., Yin, W., Li, H., Houssain, E., Han, Z.: Collaborative spectrum sensing from sparse observations using matrix completion for cognitive radio networks. 2010 IEEE International Conference on Acoustics Speech and Signal Processing (ICASSP), March (2010)

  14. Haupt, J., Bajwa, W.U., Rabbat, M., Nowak, R.: Compressed sensing for networked data. IEEE Signal Process. Mag. 25(2), 92–101 (2008)

    Article  Google Scholar 

  15. Guo, D., Liu, Z., Qu, X.B., Huang, L., Yao, Y., Sun, M.T.: Sparsity-Based online missing data recovery using overcomplete dictionary. IEEE Sens. J. 12(7), 2485–2495 (2012)

    Article  Google Scholar 

  16. Guo, D., Qu, X.B., Huang, L.F., Yao, Y.: Sparsity-based spatial interpolation in wireless sensor networks. Sensors 11(3), 2385–2407 (2011)

    Article  Google Scholar 

  17. Günay, O., Töreyin, B.U., Köse, K., Çetin, A.E.: Entropy functional based online adaptive decision fusion framework with application to wildfire detection in video. IEEE Trans. Image Process. 21(5), 2853–2865 (2012)

    Article  MathSciNet  Google Scholar 

  18. Youla, D.C., Webb, H.: Image restoration by the method of convex projections, part I-theory. IEEE Trans. Med. Imaging MI 1(2), 81–94 (1982)

    Article  Google Scholar 

  19. Boyd, S., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  20. Yin, W., Osher, S., Goldfarb, D., Darbon, J.: Bregman iterative algorithms for applications to compressed sensing. SIAM J. Imaging Sci. 1(1), 143–168 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  21. Cai, J.-F., Osher, S., Shen, Z.: Linearized Bregman iterations for compressed sensing. Math. Comput. 78(267), 1515–1536 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  22. Daubechies, I., Fornasier, M., Loris, I.: Accelerated projected gradient method for linear inverse problems with sparsity constraints. J. Fourier Anal. Appl. 14, 764–792 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Tropp, J., Gilbert, A.: Signal recovery from random measurements via orthogonal matching pursuit. IEEE Trans. Inf. Theory 53, 4655–4666 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  24. Needell, D., Vershynin, R.: Uniform uncertainty principle and signal recovery via regularized orthogonal matching pursuit. Found. Comput. Math. 9(3), 317–334 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  25. Dai, W., Milenkovic, O.: Subspace pursuit for compressive sensing signal reconstruction. IEEE Trans. Inf. Theory 55, 2230–2249 (2009)

    Article  MathSciNet  Google Scholar 

  26. Needell, D., Tropp, J.A.: CoSaMP: iterative signal recovery from incomplete and inaccurate samples. Appl. Comput. Harmon. Anal. 26(3), 301–321 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  27. Do, T.T., Gan, L., Nguyen, N.: Sparsity adaptive matching pursuit algorithm for practical compressed sensing. Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, California (2008)

  28. Nakarmi, U., Rahnavard, N.: BCS: compressive sensing for binary sparse signal. Military Communications Conference, Orlando, November (2012)

  29. Iwen, M.A., Spencer, C.V.: A note on compressed sensing and the complexity of matrix multiplication. Inf. Process. Lett. 109, 468–471 (2012)

    Article  MathSciNet  Google Scholar 

  30. Mallat, S., Zhang, Z.: Matching pursuits with time-frequency dictionaries. IEEE Trans. Signal Process. 41(12), 3397–3415 (1993)

    Google Scholar 

  31. Mallat, S., Davis, G., Zhang, Z.: Adaptive time-frequency decompositions. SPIE J. Opt. Eng. 33, 2183–2191 (1994)

    Article  Google Scholar 

  32. Kutyniok, G., Eldar, Y.C.: Compressed Sensing: Theory and Applications, 20–21. Cambridge University Press, Cambridge (2012)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China under the Grant No. \(61171015\). And it is also supported by China Postdoctoral Science Foundation under the Grant \(2013M531554\).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue Bi.

Appendices

Appendix 1: The fixed step size \(s_{fix}< \frac{K}{2}\)

Let \(T\) denote the support of original signal and \(i\) be the iteration index. It is assumed that the measurement matrix satisfies the RIP and the \(mth \) iteration is the last one of the stage \(\Vert \mathbf {x}_{\Omega }\Vert ^{2}_{2}\le \frac{1}{4}\Vert \mathbf {y}\Vert ^{2}_{2}\) . Note that \(1^{2}+1^{2}+0+0+1^{2}=1+1+0+0+1\). Let \(\mathbf {z}\) be a \(0-1\) binary signal, we have

$$\begin{aligned} \Vert \mathbf {z}\Vert ^{2}_{2}=\Vert \mathbf {z}\Vert _{1}=\Vert \mathbf {z}\Vert _{0} \end{aligned}$$
(8)

When \(\Vert \mathbf {x}_{\Omega }\Vert ^{2}_{2}\le \frac{1}{4}\Vert \mathbf {y}\Vert ^{2}_{2}\) , the step size is increased by \(s^{i}=2^{i}\) and the estimated sparsity level is updated by \(k^{i+1}=k^{i}+s^{i}\). For example,

$$\begin{aligned}&k^{1}=2, \quad k^{2}=k^{1}+s^{1}=2+2=4\\&k^{3}=k^{2}+s^{2}=4+2^{2}=8 \quad k^{4}=k^{3}+2^{3}=16. \end{aligned}$$

Therefore,

$$\begin{aligned} k^{i}=2^{i}. \end{aligned}$$
(9)

When \(\Vert \mathbf {x}_{\Omega }\Vert ^{2}_{2}\le \frac{1}{4}\Vert \mathbf {y}\Vert ^{2}_{2}\), by Theorem 1 and (8), one has

$$\begin{aligned} \Vert \mathbf {x}_{\Omega }\Vert ^{2}_{2}\le \frac{1}{4}\Vert \mathbf {y}\Vert ^{2}_{2}<\frac{1}{2}\Vert \mathbf {x}_{T}\Vert ^{2}_{2}. \end{aligned}$$

and

$$\begin{aligned} \Vert \mathbf {x}_{\Omega }\Vert _{0}\le \frac{1}{4}\Vert \mathbf {y}\Vert ^{2}_{2}<\frac{1}{2}\Vert \mathbf {x}_{T}\Vert _{0}. \end{aligned}$$

Furthermore, when \(i\le m\), we get

$$\begin{aligned} k^{i}\le \frac{1}{4}\Vert \mathbf {y}\Vert ^{2}_{2}<\frac{1}{2}K. \end{aligned}$$
(10)

The step size \(s_{fix}\) is fixed at the \(mth \) iteration with \(s_{fix}=s^{m}\).

Therefore, at the \(mth \) iteration

$$\begin{aligned} s_{fix}=s^{m}=k^{m}=2^{m}. \end{aligned}$$

By invoking (10), it follows that

$$\begin{aligned} k^{m}<\frac{1}{2}K. \end{aligned}$$
(11)

Hence,

$$\begin{aligned} s_{fix}<\frac{1}{2}K. \end{aligned}$$
(12)

which completes the proof.

Appendix 2: The procedure will move into the stage of\(\frac{1}{4}\Vert \mathbf {y}\Vert ^{2}_{2}<\Vert \mathbf {x}_{\Omega }\Vert ^{2}_{2}\le \frac{1}{2}\Vert \mathbf {y}\Vert ^{2}_{2}\) as soon as the step size is fixed

The proof is proved by contradiction. It is still assumed that the \(m\)th iteration is the last one of the stage \(\Vert \mathbf {x}_{\Omega }\Vert ^{2}_{2}\le \frac{1}{4}\Vert \mathbf {y}\Vert ^{2}_{2}\). Suppose that the procedure will move into the stage of \(\Vert \mathbf {x}_{\Omega }\Vert ^{2}_{2}>\frac{1}{2}\Vert \mathbf {y}\Vert ^{2}_{2}\) at the \((m+1)\)th iteration.

At the \((m+1)th\) iteration, \(\Vert \mathbf {x}_{\Omega }\Vert _{0}=k^{m+1}\) and \(\Vert \mathbf {x}_{\Omega }\Vert ^{2}_{2}>\frac{1}{2}\Vert \mathbf {y}\Vert ^{2}_{2}.\)

By invoking (8), it follows that

$$\begin{aligned}&k^{m+1}>\frac{1}{2}\Vert \mathbf {y}\Vert ^{2}_{2}.\end{aligned}$$
(13)
$$\begin{aligned}&k^{m+1}-k^{m}>\frac{1}{4}\Vert \mathbf {y}\Vert ^{2}_{2}. \end{aligned}$$
(14)

This result is a combination of (10) and (13). Therefore,

$$\begin{aligned} s_{fix}> \frac{1}{4}\Vert \mathbf {y}\Vert ^{2}_{2}. \end{aligned}$$
(15)

According to “Appendix 1,” \(s_{fix}=k^{m}\) and \(k^{m}\le \frac{1}{4}\Vert \mathbf {y}\Vert ^{2}_{2}\). Therefore,

$$\begin{aligned} s_{fix}\le \frac{1}{4}\Vert \mathbf {y}\Vert ^{2}_{2}. \end{aligned}$$
(16)

It is perceived that (15) clearly contradicts (16). Thus, the process will move into the stage of \(\frac{1}{4}\Vert \mathbf {y}\Vert ^{2}_{2}<\Vert \mathbf {x}_{\Omega }\Vert ^{2}_{2}\le \frac{1}{2}\Vert \mathbf {y}\Vert ^{2}_{2}\) as soon as the step size is fixed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bi, X., Chen, X., Li, X. et al. Energy-based adaptive matching pursuit algorithm for binary sparse signal reconstruction in compressed sensing. SIViP 8, 1039–1048 (2014). https://doi.org/10.1007/s11760-014-0614-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-014-0614-y

Keywords

Navigation