Skip to main content
Log in

Structural similarity classifier for facial expression recognition

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

A novel Gabor filter structural similarity algorithm (GFSSIM) is proposed for facial expression recognition (FER) on noisy images. Low-resolution facial images with low SNRs are specifically dealt with FER system. The features are extracted using 40 Gabor filters, and a feature subset is selected for classification. The test image is classified based on proposed GFSSIM algorithm. The experimental results show that the recognition rate for heavily deteriorated images outperforms the conventional classifier method. In addition, the proposed method is more efficient from the computational complexity point of view.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Ekman, P., Rolls, E.T., Perrett, D.I., Ellis, H.D.: Philosophical transactions of the Royal Society of London. Ser. B Biol. Sci. 335(1273), 63 (1992)

  2. Fasel, B., Luettin, J.: Automatic facial expression analysis: a survey. Pattern Recogn. 36(1), 259–275 (2003)

    Article  MATH  Google Scholar 

  3. Kanade, T., Tian, Y., Cohn, J.F.: Comprehensive database for facial expression analysis. In: Proceedings of the Fourth IEEE International Conference on Automatic Face and Gesture Recognition, pp. 46–53. Grenoble, France (2000)

  4. Pantic, M., Patras, I.: Dynamics of facial expression: Recognition of facial actions and their temporal segments from face profile image sequences. IEEE Trans. Syst. Man. Cybern. Part B 36, 433–449 (2006)

    Google Scholar 

  5. Lyons, M., Akamatsu, S., Kamachi, M., Gyoba, J.: Coding facial expressions with Gabor wavelets. In: Proceedings of the 3rd International Conference on Face and Gesture Recognition (FG’98), pp. 200–205. Nara, Japan (1998)

  6. Lajevardi, S.M., Hussain, Z.M.: Automatic facial expression recognition: feature extraction and selection. SIViP 6(1), 159–169 (2012)

    Article  Google Scholar 

  7. Buciu, I., Kotropoulos, C., Pitas, I.: Comparison of ICA approaches for facial expression recognition. Signal Image Video Process. 3(4), 345–361 (2009)

    Google Scholar 

  8. Lajevardi, S.M., Hussain, Z.M.: Novel higher-order local autocorrelation-like feature extraction methodology for facial expression recognition. IET Image Proc. 4, 114–119 (2010)

    Article  Google Scholar 

  9. Shan, C., Gong, S., McOwan, P.W.: Facial expression recognition based on local binary patterns: a comprehensive study. Image Vis. Comput. 27(6), 803–816 (2009)

    Google Scholar 

  10. Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley (2012)

  11. Lajevardi, S.M., Hussain, Z.M.: Contourlet structural similarity for facial expression recognition. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP 2010), pp. 1118–1121. Dallas, Texas, USA (2010)

  12. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13, 600–612 (2004)

    Google Scholar 

  13. Viola, P., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57, 137–154 (2004)

    Google Scholar 

  14. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Mach. Intell. 27, 1226–1238 (2005)

    Google Scholar 

  15. Lajevardi, S.M., Hussain, Z.M.: Local correlation for noisy facial expression images. In: Proceeding of the International Symposium on Bioelectronics and Bioinformatics, pp. 64–67. Melbourne, Australia (2009)

  16. Sampat, M.P., Zhou, W., Gupta, S., Bovik, A.C., Markey, M.K.: Complex wavelet structural similarity: a new image similarity index. IEEE Trans. Image Process. 18(11), 2385–2401 (2009)

    Article  MathSciNet  Google Scholar 

  17. Gonzalez, R., Woods, R., Eddins, S.: Digital Image Processing Using MATLAB. Pearson Education, Inc., London (2004)

  18. Lajevardi, S.M., Hussain, Z.M.: Higher order orthogonal moments for invariant facial expression recognition. Digit. Signal Proc. 20, 1771–1779 (2010)

    Google Scholar 

  19. Plataniotis, K. N., Venetsanopoulos, A. N.: Color image processing and applications. Springer, Heidelberg (2000)

  20. Schulte, S., Witte, V.D., Nachtegael, M., Weken, D.V.D., Kerre, E.E.: Fuzzy two-step filter for impulse noise reduction from color images. IEEE Trans. Image Process. 15(11), 3567–3578 (2006)

    Google Scholar 

  21. Xu, Z., Wu, H.R., Qiu, B., Yu, X.: Geometric features-based filtering for suppression of impulse noise in color images. IEEE Trans. Image Process. 18(8), 1742–1759 (2009)

    Article  MathSciNet  Google Scholar 

  22. Michel, P., Kaliouby, R.E.: Real time facial expression recognition in video using support vector machines. In: Proceedings of the 5th International Conference on Multimodal Interfaces (ICMI), pp. 258–264. Vancouver, Canada (2003)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seyed Mehdi Lajevardi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lajevardi, S.M. Structural similarity classifier for facial expression recognition. SIViP 8, 1103–1110 (2014). https://doi.org/10.1007/s11760-014-0639-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-014-0639-2

Keywords

Navigation