Skip to main content
Log in

Decision-based neighborhood-referred unsymmetrical trimmed variants filter for the removal of high-density salt-and-pepper noise in images and videos

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

A fixed \(3\times 3\) decision-based algorithm is proposed for the enhancement of images, and videos that are heavily corrupted by salt-and-pepper noise are proposed. The algorithm uses unsymmetrical trimmed variants for the noise removal. The corrupted pixel is replaced based on the number of non-noisy pixel in the current processing window. The proposed algorithm was applied on various grayscale, and videos that gave excellent peak signal-to-noise ratio, high image enhancement factor, low mean square error, and very good SSIM with excellent edge preservation even at high noise densities. If all the pixels of the current processing window are noisy, then instead of unsymmetrical midpoint, global trimmed mean of the image is replaced as output. The proposed algorithm shows excellent noise suppression capability, when compared to standard and existing filters in terms of both qualitative and quantitative measures at highly noisy environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Astola, J., Kusmanen, P.: Fundamentals of Non Linear Digital Filtering. CRC Press, Boca Raton (1997)

    Google Scholar 

  2. Huang, T.S., Yang, G.J.: Fast two dimensional median filtering algorithm. IEEE Trans. Acoust. Speech Signal Process. 27, 13–18 (1979)

    Article  Google Scholar 

  3. Ko, S.J., Lee, Y.H.: Center weighted median filters and their application to image enhancement. IEEE Trans. Circuits Syst. 38(9), 984–993 (1991)

    Article  Google Scholar 

  4. Brownrigg, D.R.K.: The weighted median filter. Commun. ACM 27(8), 807–818 (1984)

    Article  Google Scholar 

  5. Abreau, E., Mitra, S.K.: Efficient approach for the removal of impulse noise from high corrupted images. IEEE Trans. Image Process. 5(6), 1012–1025 (1996)

    Article  Google Scholar 

  6. Chen, T., Ma, K.: Tri-state median filter for image de-noising. IEEE Trans. Image Process. 8(12), 1834–1837 (1999)

    Article  Google Scholar 

  7. Eng, H., Ma, K.: Noise adaptive soft-switching median filter. IEEE Trans. Image Process. 10(2), 242–251 (2001)

    Article  MATH  Google Scholar 

  8. Wang, Z., Zhang, D.: Progressive switching median filter for removal of impulse noise from highly corrupted images. IEEE Trans. Circuits Syst. II 46, 78–80 (1999)

    Article  Google Scholar 

  9. Hwang, H., Haddad, R.A.: Adaptive median filters: new algorithms and results. IEEE Trans. Image Process. 4, 499–502 (1995)

    Article  Google Scholar 

  10. Chan, R.H., Ho, C.-W., Nikolova, M.: Salt and pepper noise removal by median-type noise detectors and detail preserving regularization. IEEE Trans. Image Process. 14(10), 1479–1485 (2005)

  11. Srinivasan, K.S., Ebenezer, D.: A new fast and efficient decision-based algorithm for removal of high-density impulse noises. IEEE Signal Process. Lett. 14(3), 189–192 (2007)

    Article  Google Scholar 

  12. Hamza, A., Krim, H.: Image denoising: a nonlinear robust statistical approach. IEEE Trans. Signal Process. 49(12), 304–3054 (2001)

    Google Scholar 

  13. Vijayakumar, V.R., Vanathi, P.T., Kanagasabapathy, P., Ebenezer, D.: High density impulse noise removal using robust estimation based filter. Int. J. Comput. Sci. 35(3), 766–775 (2008)

    Google Scholar 

  14. Manikandan, S., Ebenezer, D.: A non linear decision based algorithm for removal of strip lines, drop lines, blotches, band missing and impulses in images & videos. EURASIP J. Image Video Process. 8(3), 485–494 (2008)

    Google Scholar 

  15. Roomi, S.M., Maheswari, T.P., Kumar, V.A.: A detail preserving filter for impulse noise detection and removal. ICGST-GVIP J. 7(3), 254–263 (2007)

    Google Scholar 

  16. Florencio, D.A., Schafer, R.W.: Decision-based median filtering using local signal logistics. In: Proceedings of SPIE Symp. Visual communication. Image Processing, vol. 2038, pp. 268–275 (1994)

  17. Roomi, S.M., Lakshmi, I.M., Kumar, V.A.: A recursive Gaussian weighted filter for impulse noise removal. GVIP J. 6(3), 378–386 (2006)

    Google Scholar 

  18. Wang, S., Li, Y., Chung, F.-L., Xu, M.: An iterative Self adaptive algorithm to impulse noise filtering in color images. Int. J. Inf. Technol. 11(10), 101–111 (2005)

    Google Scholar 

  19. Xu, X., Miller, E., Chen, D., Sarhadi, M.: Adaptive two-pass rank order filter to remove impulse noise in highly corrupted images. IEEE Trans. Image Process. 13(2), 238–247 (2004)

    Article  Google Scholar 

  20. Esakkirajan, S., Veerakumar, T.: Removal of high density salt and pepper noise through modified decision based Unsymmetrical trimmed median filter. IEEE Signal Process. Lett. 18(5), 287–290 (2011)

    Article  Google Scholar 

  21. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error measurement to structural similarity. IEEE Trans. Image Process. 13(4), 102–109 (2004)

    Article  Google Scholar 

  22. Narvekar, N.D., Karam, L.J.: A no-reference image blur metric based on the cumulative probability of blur detection (CPBD). IEEE Trans. Image Process. 20(9), 2678–2683 (2011)

    Article  MathSciNet  Google Scholar 

  23. Pitas, I., Venetasanpoulos, A.N.: Non Linear Digital Filters: Principles and Applications. Kluwer, Boston (1990)

    Book  Google Scholar 

  24. Hongke, Z.: Generalized threshold decomposition. J. Electron. 14(1), 63–67 (1997)

    Google Scholar 

  25. Aiswarya, K., Jayaraj, V., Ebenezer, D.: A new and efficient algorithm for the removal of high density salt & pepper noise in images & videos. In: Proceedings in International Conference on Computer Modelling and Simulation, pp. 409–413. (2010)

  26. Balasubramanian, S., Kalishwaran, S., Muthuraj, R., Ebenezer, D., Jayaraj, V.: An efficient non linear cascade filtering algorithm for removal of high density salt and pepper noise in image and video sequence. In: Proceedings in International Conference on Control, Automation, Communication and Energy Conservation, pp. 1–6. (2009)

  27. Abdou, I.A., Pratt, W.: Quantitative design and evaluation of enhancement/thresholding edge detectors. Proc. IEEE 67(5), 753–766 (1979)

    Article  Google Scholar 

  28. Jayaraj, V., Ebenezer, D., Vijayakumar, V.R.: A noise free estimation switching median filter for detection and removal of impulse noise in images. Eur. J. Sci. Res. 51(4), 563–581 (2011)

  29. Marziliano, P., Dufaux, F., Winkler, S., Ebrahimi, T.: Perceptual blur and ringing metrics: applications to JPEG2000. Signal Process. Image Commun. 19(2), 163–172 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Vasanth.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vasanth, K., Jawahar Senthil Kumar, V. Decision-based neighborhood-referred unsymmetrical trimmed variants filter for the removal of high-density salt-and-pepper noise in images and videos. SIViP 9, 1833–1841 (2015). https://doi.org/10.1007/s11760-014-0665-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-014-0665-0

Keywords

Navigation