Abstract
Human–computer interface systems provide an alternative input modality to allow people with severe disabilities to access computer systems. One of the inexpensive and unobtrusive methods for this purpose is image-based eye blinks detection. Currently, available human–computer interface systems are often intrusive, limit in head rotation, require special hardware, and have special lighting or manual initialization. This paper presented a new robust method for real-time eye blinks detection. This method enables interaction using “blink patterns,” which are sequences of long and short blinks interpreted as semiotic messages. The precise location of the eye is determined automatically through multi-cues, accompanied by integration of eye variance feature and Gaussian Mixture Model classifier. The detected eye window is converted into a binary image. The eyelid’s distance is extracted by applying a variance projection derivative function. By following the eyelid’s distance in a finite-state machine, the blink patterns can be detected. The performance of the presented algorithm is evaluated using several frame streams. The experimental results show a robust eye blink pattern detection system in real environments.











Similar content being viewed by others
References
Song, F., Tan, X., Chen, S., Zhou, Z.H.: A literature survey on robust and efficient eye localization in real-life scenarios, Pattern Recognit. (2013). doi:10.1016/j.patcog.2013.05.009
Lajevardi, S.M., Hussain, Z.M.: Automatic facial expression recognition: feature extraction and selection. Signal Image Video Process. 6(1), 159–169 (2012)
Moallem, P., Mousavi, B.S., Monadjemi, S.A.: A novel fuzzy rule base system for pose independent faces detection. Appl. Soft Comput. 11, 1801–1810 (2011)
Baltzakis, H., Pateraki, M., Trahanias, P.: Visual tracking of hands, faces and facial features of multiple persons. Mach. Vis. Appl. (2012). doi:10.1007/s00138-012-0409-5
Fathi, A.H., Manzuri, M.T.: Eye detection and tracking in video stream. In: International Symposium on Communication and Information Technologies 2004 (ISCIT 2004) Sapporo, Japan, pp. 1258–1261, 26–29 October 2004
Magee, J.J., Scott, M.R., Waber, B.N., Betke, M.: EyeKeys: a real-time vision interface based on gaze detection from a Low-grade video camera. Comput. Vis. Hum. Comput. Interact. 3766, 90–99 (2005)
Benoit, A., Caplier, A.: Fusing bio-inspired vision data for simplified high level scene interpretation: application to face motion analysis. Comput. Vis. Image Underst. 114(7), 774–789 (2010)
Sirohey, S., Rosenfeld, A., Duric, Z.: A method of detecting and tracking irises and eyelids in video. Pattern recognit. 35, 1389–1401 (2002)
Meynet, J., Popovici, V., Thiran, J.-P.: Mixtures of boosted classifiers for frontal face detection. SIViP 1(1), 29–38 (2007)
Wang, Q., Yang, W., Wang, H., Yang, J., Zheng, Y.: Face detection using binary template matching and SVM. In: Book Series Lecture Notes in Computer Science vol. 4099, pp. 1237–1241 (2006)
Kaminski, J.Y., Knaan, D., Shavit, A.: Single image face orientation and gaze detection. Mach. Vis. Appl. 21, 85–98 (2009)
Nabati, M., Behrad, A.: 3D Head pose estimation and camera mouse implementation using a monocular video camera. Signal Image Video Process. (2012, december). doi:10.1007/s11760-012-0421-2
Zhang, Z., Potamianos, G., Senior, A.W., Huang, T.S.: Joint face and head tracking inside multi-camera smart rooms. SIViP 1(2), 163–178 (2007)
Yan, C., Wang, Y., Zhang, Z.: Robust real-time multi-user pupil detection and tracking under various illumination and large-scale head motion. Comput. Vis. Image Underst. 115, 1223–1238 (2011)
Zhu, Z., Ji, Q.: Eye and gaze tracking for interactive graphic display. Mach. Vis. Appl. 15, 139–148 (2004)
Lee, W.O., Lee, E.C., Park, K.R.: Blink detection robust to various facial poses. J. Neurosci. Methods 193, 356–372 (2010)
Li, Y., Wang, S., Ding, X.: Eye/eyes tracking based on a unified deformable template and particle filtering. Pattern Recognit. Lett. 31, 1377–1387 (2010)
Park, C.W., Lee, T.: A robust facial feature detection on mobile robot platform. Mach. Vis. Appl. 21, 981–988 (2010)
Torricelli, D., Goffredo, M., Conforto, S., Schmid, M.: An adaptive blink detector to initialize and update a view-based remote eye gaze tracking system in a natural scenario. Pattern Recognit. Lett. 30, 1144–1150 (2009)
Santis, A.D., Iacoviello, D.: Robust real time eye tracking for computer interface for disabled people. Comput. Methods Programs Biomed. 96, 1–11 (2009)
Krolak, A., Strumillo, P.: Eye-blink detection system for human–computer interaction. Univers. Access Inf. Soc. 11, 409–419 (2012)
Song, F., Tan, X., Liu, X., Chen, S.: Eyes closeness detection from still images with multi-scale histograms of principal oriented gradients. Pattern Recognit. (2014). doi:10.1016/j.patcog.2014.03.024i
Feraund, R., Bernier, O.J., Viallet, J., Collobert, M.: A fast and accurate face detector based on neural network. IEEE Trans. Pattern Anal. Mach. Intell. 23, 42–53 (2001)
Wang, P., Ji, Q.: Multi-view face and eye detection using discriminant features. Comput. Vis. Image Underst. 105(2), 99–111 (2007)
Li, Y., Qi, X., Wang, Y.: Eye detection using fuzzy template matching and feature-parameter-based judgement. Pattern Recognit. Lett. 22(10), 1111–1124 (2001)
Jiang, X., Tien, G., Huang, D., Zheng, B., Atkins, M.S.: Capturing and evaluating blinks from video-based eye trackers. Behav. Res. (2012). doi:10.3758/s13428-012-0294-x
Vidal, M., Turner, J., Bulling, A., Gellersen, H.: Wearable eye tracking for mental health monitoring. Comput. Commun. 35, 1306–1311 (2012)
Nguyen, T., Nguyen, T.H., Truong, K.Q.D., Toi Van Vo.: A mean threshold algorithm for human eye blinking detection using EEG. In: IFMBE Proceedings 4th International Conference on Biomedical Engineering in Vietnam, vol. 40, pp. 275–279. (2013)
Picot, A., Charbonnier, S., Caplier, A., Vu, N.S.: Using retina modelling to characterize blinking: comparison between EOG and video analysis. Mach. Vis. Appl. 23, 1195–1208 (2012)
Yang, S.W., Lin, C.S., Lin, S.K., Lee, C.H.: Design of virtual keyboard using blink control method for the severely disabled. Comput. Methods Programs Biomed. (2013). doi:10.1016/j.cmpb.2013.04.012
Erdem, A., Erdem, E., Yardimci, Y., Atalay, V., Çetin, A.E.: Computer vision based mouse. In: Proceeding of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP’02), vol. 4, pp. 4178–4181. Orlando, FL. 13–17 May 2002
Duda, R.O., Hart, P.E., Stork, D.G.: Pattern Classification. Wiley, New York (2001)
Fathi, A.H., Abdali-Mohammadi, F., Manzuri, M.T.: The eyelids distance detection in gray scale images. In: International Symposium on Communication and Information Technologies 2006 (ISCIT 2006) Bangkok, Thiland, pp. 937–940 (2006)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fathi, A., Abdali-Mohammadi, F. Camera-based eye blinks pattern detection for intelligent mouse. SIViP 9, 1907–1916 (2015). https://doi.org/10.1007/s11760-014-0680-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-014-0680-1