Abstract
Biomedical image processing is experiencing a significant progress with many applications. However, automatic recognition of microscopic pathogens from their images remains a challenge that will allow clinical laboratories to increase both the speed of tests and the reliability of diagnoses. We present an algorithm for edge detection of parasites in microscopic images of stools, using the multi-scale wavelet transform. This method is an evolution of the Canny–Mallat detector which gives the possibility to vary the frequency of the analysis in order to find the outlines of the most significant edges. The various contours obtained are chained across the scales from the coarsest to the finest. Using this algorithm, we were able to correctly represent the contours of the features of parasites found in microscopic images. The results obtained were compared with those produced by classical edge detectors on the same images. It comes out from both subjective and objective quantitative performances evaluation that our detector, better than all others, can clearly mark the outlines of the structures of the pathogen on an image of stools.












Similar content being viewed by others
Abbreviations
- \(\psi (x)\) :
-
The wavelet function
- \(a, b\) :
-
The scale factor or expansion factor and the shifting factor
- \(\psi _{a,b} (x)\) :
-
The family of wavelets associated with the mother wavelet \(\psi \)
- \(W_a f(b)\) :
-
The wavelet transform of the function \(f(x)\)
- \(L^{2}(\mathbb {R}^{2})\) :
-
The set of square integrable function defined on \(\mathbb {R}^{2}\)
- \((x, y)\) :
-
The pixel image coordinates
- \(f(x,y)\) :
-
The input image function
- \(I\times J\) :
-
The dimension of the input image function \(f\)
- \(D^{1}f(2^{j},b_x,b_y)\), \(D^{2}f(2^{j},b_x,b_y)\) :
-
The discrete wavelet transform components
- \(M_{2^{j}} f(x,y)\) :
-
The module of the wavelet transform
- \(A_{2^{j}} f(x,y)\) :
-
The angle between the wavelet transform vector and the horizontal axis of the image plane \((x, y)\)
- \(G(x,y)\) :
-
The Gaussian function
- \(\beta ^{n}(x)\) :
-
The B-spline function of degree \(n\)
- \(\theta \) :
-
The low-pass filter representing a smoothing matrix
- \(D_x, D_y \) :
-
The high-pass discrete filters for the derivation
- ROC:
-
The receiver operating characteristic
- AUC:
-
The area under the ROC curve
- TP, TN :
-
The numbers of true positive and true negative
- FP, FN:
-
The numbers of false positive and false negative
- TPR :
-
The true positive rate
- FPR:
-
The false positive rate
- \(F\) :
-
The \(F\)-measure or harmonic mean of precision and recall
- TL, TH:
-
The low and high thresholds
- \(\varepsilon \) :
-
The oscillations threshold
- EGT:
-
The estimated ground truth
- PS:
-
The best parameter set for an estimated ground truth
- PSROC:
-
The parameter set ROC curve
- \({N}_{\text {th}}\) :
-
The number of detection threshold
- \(N_{\text {sc}}\) :
-
The number of analyzing scale
- CT:
-
The correspondence threshold
- PGTi :
-
The potential ground truth for the i correspondence threshold
- CTROC :
-
The correspondence threshold ROC
References
OMS (Organisation Mondiale de la Santé):) Parasitologie médicale: techniques de base pour le laboratoire. Organisation mondiale pour la santé, Genève (1993)
Saha, B.T.: Contribution de la transformation en ondelettes dans l’analyse et l’interprétation automatiques des images en parasitologie intestinale. Thèse de master II en Physique, option Electronique. Université de Dschang, Décembre, Faculté des Sciences (2010)
Dimitripoulus, K., Michail, E., Koletsa, T., Kostopoulos, I., Grammalidis, M.: Using adaptive neuro-fuzzy inference systems for detection of centroblasts in microscopic images of follicular lymphoma. Signal Image Video Process. (2014). doi:10.1007/s11700.014-0688-6
Juneja, M., Sandhu, P.S.: Performance evaluation of edge detection techniques for images in spatial domain. Int. J. Comput. Theory Eng. 1(5), 614–621 (2009)
Li, T.-G., Wang, S.-P., Zhao, N.: Gray scale edge detection for gastric tumor pathologic cell images by morphological analysis. Comput. Biol. Med. 39(Elsevier), 947–952 (2009)
Kecheril, S.S., Venkataraman, D., Suganthi, J., Sujathan, K.: Automated lung cancer detection by the analysis of glandular cells in sputum cytology images using scale space features. Signal Image Video Process. (2013). doi:10.1007/s11700.013-0512-8
Senthilkumaran, N., Rajesh, R.: Edge detection techniques for image segmentation—a survey of soft computing approaches. Int. J. Recent Trends Eng. 1(2), 250–254 (2009)
Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. 8(6), 679–698 (1986)
Zang, R., Ouyang, W., Cham, W.-K.: Image edge detection using Hidden Markov Chain model based on the non-decimated wavelet. Int. J. Signal Process. Image Process. Pattern 2(1), 109–118 (2009)
Alshennawy, A.A., Aly, A.: Edge detection in digital images using fuzzy logic technique. World Acad Sci Eng Technol 51, 178–186 (2009)
Abdulghafour, M.: Image segmentation using fuzzy logic and genetic algorithms. J. WSCG 11(1), 3–7 (2003)
Araght, L.F., Arvan, M.R.: An implementation image edge and feature detection using neural network. In: Proceedings of International Multiconference of Engineers and Computer Scientists 2009, vol. 1, pp. 835–837. IMECS 2009, Hong Kong (2009)
Yuan, X., Situ, N., Zouridakis, G.: Automatic segmentation of skin lesion images using evolution strategies. Biomed. Signal Process. Control 3, 220–228 (2008)
Pan, X., Ye, Y., Cheng, J., Wang, D., Jiang, B.: Composite derivative and edge detection. SIViP 8(3), 523–531 (2014)
Ari, S., Kumar Ghosh, D., Kumar Mohanty, P.: Edge detection using ACO and F ratio. SIViP 8(4), 625–634 (2014)
Papari, G., Petkov, N.: Edge and line oriented contour detection: state of the art. Image Vis. Comput. 29, 79–103 (2011)
Mallat, S., Zhong, S.: Characterization of signals from multiscale edges. IEEE Trans. Pattern Anal. Mach. Intell. 14(7), 710–732 (1992)
Gebäck, T., Koumoutsakos, P.: Edge detection in microscopy images using curvelets. BMC Bioinform. (2009). http://www.biomedcentral/1471-2105/10/75
Lai, C.-H., Yu, S.-S., Tseng, H.-Y., Tsai, M.-H.: A protozoan parasite extraction scheme for digital microscopic images. Comput. Med. Imaging Graph. 34, 122–130 (2010)
Mallat, S., Liang Hwang, W.: Singularity detection and processing with wavelets. IEEE Trans. Inf. Theory 38(2), 617–643 (1992)
Olivier le Cadet “Méthodes d’ondelettes pour la segmentation d’images. Applications à l’imagerie médicale et au tatouage d’images. Thèse de doctorat en mathématiques appliquées à l’Institut National Polytechnique de Grenoble (2004)
Witkin, A.P.: Scale-space filtering. In: International Joint Conference on Artificial Intelligence, Karlsruhe, West Germany, pp. 1019–1022 (1983)
Lindeberg, T.: Space-scale theory: a basic tool for analyzing structures at different scales. J. Appl. Stat. 21(2), 225–270 (1994)
Unser, M.: Splines: a perfect fit for signal processing. In: Plenary Talk, Tenth European Signal Processing Conference (EUSIPCO’00) Tampere, Finland (2000)
Martin, D., Fowlkes, C., Tal, D., Malik, J.: A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. In: ICCV, (2001)
Ahuja, S.: Image segmentation dataset. http://siddhantahuja.wordpress.com/category/dataset/
Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchical image segmentation. IEEE Trans. Pattern. Anal. Mach. Intell. 33(5), 898–916 (2011)
OMS (Organisation Mondiale de la Santé): Manuel des techniques de base pour le laboratoire médical”, Genève (1982)
Yitzhaky, Y., Peli, E.: A method for objective edge detection evaluation and detector parameter selection. IEEE Trans Pattern Anal Mach Intell 25(10) (2003)
Acknowledgments
The authors greatly thank the anonymous reviewers for their very constructive remarks.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Tchiotsop, D., Saha Tchinda, B., Tchinda, R. et al. Edge detection of intestinal parasites in stool microscopic images using multi-scale wavelet transform. SIViP 9 (Suppl 1), 121–134 (2015). https://doi.org/10.1007/s11760-014-0716-6
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-014-0716-6