Abstract
Over the past few years, omnidirectional vision has become an important area of research because omnidirectional cameras offer a large field of view compared with conventional perspectives cameras. However, omnidirectional images contain important distortions, and classical optical flow estimations are thus not appropriate. In this paper, we propose to estimate optical flow on omnidirectional images using a phase-based method which proved its robustness and its accuracy on the perspective images. We will adapt different treatments in order to take into account the nature of omnidirectional images.










Similar content being viewed by others
References
Adelson, E.H., Bergen, J.R.: Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2(2), 284–299 (1985)
Alibouch, B., Radgui, A., Rziza, M., Aboutajdine, D.: Optical flow estimation on omnidirectional images: an adapted phase based method. In: Elmoataz, A., Mammass, D., Lezoray, O., Nouboud, F., Aboutajdine, D. (eds.) Image and Signal Processing. Lecture Notes in Computer Science, vol. 7340, pp. 468–475. Springer, Berlin, Heidelberg (2012)
Antoine, J.P., Demanet, L., Jacques, L., Vandergheynst, P.: Wavelets on the sphere: implementation and approximations. Appl. Comput. Harmon. Anal. 13(3), 177–200 (2002)
Bagnato, L., Frossard, P., Vandergheynst, P.: Optical flow and depth from motion for omnidirectional images using a tv-l1 variational framework on graphs. In: Proceedings of the 16th IEEE International Conference on Image Processing, ICIP’09. IEEE Press, Piscataway, NJ, USA, pp. 1453–1456 (2009)
Barron, J.L., Fleet, D.J., Beauchemin, S.S.: Performance of optical flow techniques. Int. J. Comput. Vis. 12(1), 43–77 (1994)
Bernard, C.: Discrete wavelet analysis: A new framework for fast optic flow computation. In: Burkhardt, H., Neumann, B. (eds.) Computer Vision ECCV98. Lecture Notes in Computer Science, vol. 1407, pp. 354–368. Springer, Berlin, Heidelberg (1998)
Bruno, E., Pellerin, D.: Robust motion estimation using spatial gabor-like filters. Signal Process. 82(2), 297–309 (2002)
Daniilidis, K., Makadia, A., Bulow, T.: Image processing in catadioptric planes: spatiotemporal derivatives and optical flow computation. In: Proceedings of the Third Workshop on Omnidirectional Vision, 2002, pp. 3–10 (2002)
Demanet, L., Vandergheynst, P.: Gabor wavelets on the sphere. In: Proceedings of the SPIE Annual Conference, Cerebrovascular Diseases. SPIE (2003)
Demonceaux, C., Kachi-Akkouche, D.: Optical flow estimation in omnidirectional images using wavelet approach. In: Conference on Computer Vision and Pattern Recognition Workshop, 2003, vol. 7, p. 76 (2003)
Fleet, D.J., Jepson, A.D.: Computation of component image velocity from local phase information. Int. J. Comput. Vis. 5(1), 77–104 (1990)
Fleet, D.J., Jepson, A.D.: Stability of phase information. IEEE Trans. Pattern Anal. Mach. Intell. 15, 1253–1268 (1993)
Gautama, T., Hulle, M.M.V.: A phase-based approach to the estimation of the optical flow field using spatial filtering. IEEE Trans. Neural Netw. 13, 1127–1136 (2002)
Geyer, C., Daniilidis, K.: Catadioptric projective geometry. Int. J. Comput. Vis. 45(3), 223–243 (2001)
Horn, B.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17(1–3), 185–203 (1981)
Ismaili Alaoui, E., Ibn-Elhaj, E.: A robust hierarchical motion estimation algorithm in noisy image sequences in the bispectrum domain. Signal Image Video Process. 3(3), 291–302 (2009)
Jepson, A.D., Fleet, D.J.: Phase singularities in scale-space. Image Vis. Comput. 9(5), 338–343 (1991)
Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: Proceedings of the 7th International Joint Conference on Artificial Intelligence—IJCAI’81, vol. 2, pp. 674–679. Morgan Kaufmann, San Francisco, CA, USA (1981)
Mochizuki, Y., Imiya, A.: Featureless visual navigation using optical flow of omnidirectional image sequence. In: Workshop Proceedings of SIMPAR, 2008, pp. 307–318 (2008)
Mochizuki, Y., Imiya, A.: Multiresolution optical flow computation of spherical images. In: Proceedings of the 14th International Conference on Computer Analysis of Images and Patterns—Volume Part II. CAIP’11, pp. 348–355. Springer, Berlin, Heidelberg (2011)
Nagel, H.H.: On a constraint equation for the estimation of displacement rates in image sequences. IEEE Trans. Pattern Anal. Mach. Intell. 11(1), 13–30 (1989)
Purwar, R., Rajpal, N.: A fast block motion estimation algorithm using dynamic pattern search. Signal Image Video Process. 7(1), 151–161 (2013)
Radgui, A., Demonceaux, C., Mouaddib, E., Rziza, M., Aboutajdine, D.: Optical flow estimation from multichannel spherical image decomposition. Comput. Vis. Image Underst. 115(9), 1263–1272 (2011)
Radgui, A., Demonceaux, C., Mouaddib, E.M., Aboutajdine, D., Rziza, M.: An adapted Lucas-Kanade’s method for optical flow estimation in catadioptric images. In: The 8th Workshop on Omnidirectional Vision, Camera Networks and Non-classical Cameras—OMNIVIS, 2008 (2008)
Tosic, I., Bogdanova, I., Frossard, P., Vandergheynst, P.: Multiresolution motion estimation for omnidirectional images. In: Proceedings of EUSIPCO 2005 (2005)
Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime tv-l1 optical flow. In: Proceedings of the 29th DAGM Conference on Pattern Recognition, pp. 214–223. Springer, Berlin, Heidelberg (2007)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Alibouch, B., Radgui, A., Demonceaux, C. et al. A phase-based framework for optical flow estimation on omnidirectional images. SIViP 10, 285–292 (2016). https://doi.org/10.1007/s11760-014-0739-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-014-0739-z