Abstract
Multi-view video plus depth (MVD) format is considered as the next-generation standard for advanced 3D video systems. MVD consists of multiple color videos with a depth value associated with each texture pixel. Relying on this representation and by using depth-image-based rendering techniques, new viewpoints for multi-view video applications can be generated. However, since MVD is captured from different viewing angles with different cameras, significant illumination and color differences can be observed between views. These color mismatches degrade the performance of view rendering algorithms by introducing visible artifacts leading to a reduced view synthesis quality. To cope with this issue, we propose an effective method for correcting color inconsistencies in MVD. Firstly, to avoid occlusion problems and allow performing correction in the most accurate way, we consider only the overlapping region when calculating the color mapping function. These common regions are determined using a reliable feature matching technique. Also, to maintain the temporal coherence, correction is applied on a temporal sliding window. Experimental results show that the proposed method reduces the color difference between views and improves view rendering process providing high-quality results.












Similar content being viewed by others
References
Vetro, A., Tourapis, A.M., Müller, K., Chen, T.: 3D-TV content storage and transmission. IEEE Trans. Broadcast. 57(2), 384–394 (2011)
Tanimoto, M.: FTV: free-viewpoint television. Sig. Process. Image Commun. 27(7), 555–570 (2012)
Smolic, A., Müller, K., Merkle, P., Kauff, P., Wiegand, T.: An overview of available and emerging 3D video formats and depth enhanced stereo as efficient generic solution. In: Proceedings of the Picture Coding Symposium (PCS), Chicago, IL, USA, pp. 1–4 (2009)
Vetro, A., Yea, S., Smolic, A.: Towards a 3D video format for auto-stereoscopic displays. In: Proceedings of the SPIE Conference on Applications of Digital Image Processing XXXI, San Diego, CA, USA (2008)
Müller, K., Merkle, P., Wiegand, T.: 3-D video representation using depth maps. Proc. IEEE 99(4), 643–656 (2011)
Kauff, P., Atzpadin, N., Fehn, C., Müller, M., Schreer, O., Smolic, A., Tanger, R.: Depth map creation and image based rendering for advanced 3DTV services providing interoperability and scalability. Signal Process. Image Commun. 22(2), 217–234 (2007)
Smolic, A., Müller, K., Merkle, P., Atzpadin, N., Fehn, C., Mller, M., Schreer, O., Tanger, R., Kauff, P., Wiegand, T., Megyesi, Z.: Multi-view video plus depth (MVD) format for advanced 3D video systems. In: Joint Video Team (JVT) of ISO/IEC MPEG and ITU-T VCEG, JVT-W100, San Jose, CA, USA (2007)
Fehn, C.: Depth-image-based rendering (DIBR), compression and transmission for a new approach on 3D-TV. In: Proceedings of the SPIE Conference on Stereoscopic Displays and Virtual Reality Systems XI, San Jose, CA, USA, pp. 93–104 (2004)
Smolic, A.: 3D video and free viewpoint video—from capture to display. Pattern Recogn. 44(9), 1958–1968 (2011)
Reiter, U., Brunnström, K., De Moor, K., Larabi, M.-C., Pereira, M., Pinheiro, A., You, J., Zgank, A.: Factors influencing quality of experience. In: Möller, S., Raake, A. (eds.) Quality of Experience: Advanced Concepts, Applications, and Methods, pp. 55–72. Springer International Publishing, Berlin (2014)
Pölönen, M., Hakala, J., Bilcu, R., Järvenpää, T., Häkkinen, J., Salmimaa, M.: Color asymmetry in 3D imaging: influence on the viewing experience. 3D Res. 3(3), 1–10 (2012)
Chen, J., Zhou, J., Sun, J., Bovik, A. C.: Binocular mismatch induced by luminance discrepancies on stereoscopic images. In: Proceedings of IEEE International Conference on Multimedia and Expo (ICME 2014), pp. 1–6 (2014)
Salmimaa, M., Hakala, J., Pölönen, M., Järvenpää, T., Bilcu, R., Häkkinen, J.: Luminance asymmetry in stereoscopic content: binocular rivalry or Luster. In: Proceedings of SID Symposium Digest of Technical Papers, pp. 801–804 (2014)
Winkler, S., Min, D.: Stereo/multiview picture quality: overview and recent advances. Signal Process. Image Commun. 28(10), 1358–1373 (2013)
Zhong, J., Kleijn, B., Hu, X.: Camera control in multi-camera systems for video quality enhancement. IEEE Sens. J. 14(9), 2955–2966 (2014)
Ilie, A., Welch, G.: Ensuring color consistency across multiple cameras. In: Proceedings of International Conference on Computer Vision (ICCV 2005), Washington, DC, USA, pp. 1268–1275 (2005)
Jung, J., Ho, Y.: Color correction for multi-view images using relative Luminance and chrominance mapping curves. J Signal Process. Syst. 72(2), 107–117 (2013)
Pitié, F., Kokaram, A. C., Dahyot, R.: N-dimensional probability density function transfer and its application to color transfer. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), Beijing, China, pp. 1434–1439 (2005)
Pitié, F., Kokaram, A.C., Dahyot, R.: Automated colour grading using colour distribution transfer. Comput. Vis. Image Underst. 107(1), 123–137 (2007)
Doutre, C., Nasiopoulos, P.: Color correction preprocessing for multiview video coding. IEEE Trans. Circuits Syst. Video Technol. 19(9), 1400–1406 (2009)
Fecker, U., Barkowsky, M., Kaup, A.: Histogram-based pre-filtering for luminance and chrominance compensation of multi-view video. IEEE Trans. Circuits Syst. Video Technol. 18(9), 1258–1267 (2008)
Chen, Y., Cai, C., Liu, J.: YUV correction for multi-view video compression. In: Proceedings of the International Conference Pattern Recognition (ICPR), Hong Kong, pp. 734–737 (2006)
Hur, J.H., Cho, S., Lee, Y.L.: Adaptive local illumination change compensation method for H.264-based multiview video coding. IEEE Trans. Circuits Syst. Video Technol. 17(11), 1496–1505 (2007)
Li, X., Jiang, L., Ma, S., Zhao, D., Gao, W.: Template based illumination compensation algorithm for multiview video coding. In: Proceedings of the SPIE Conference on Visual Communications and Image Processing (VCIP), Huangshan, China (2010)
Shi, B., Li, Y., Liu, L., Xu, C.: Color correction and compression for multi-view video using h.264 features. In: Proceedings of the 9th Asian Conference on Computer Vision (ACCV), Xi’an, China, pp. 43–52 (2009)
Yamamoto, K., Kitahara, M., Kimata, H., Yendo, T., Fujii, T., Tanimoto, M., Shimizu, S., Kamikura, K., Yashima, Y.: Multiview video coding using view interpolation and color correction. IEEE Trans. Circuits Syst. Video Technol. 17(11), 1436–1449 (2007)
Faridul, H.S., Pouli, T., Chamaret, C., Stauder, J., Tremeau, A., Reinhard, E.: A Survey of Color Mapping and Its Applications. Eurographics State of the Art Report, Strasbourg (2014)
Bay, H., Ess, A., Tuytelaars, T., Gool, L.V.: Surf: speeded up robust features. Comput. Vis. Image Underst. 110(3), 346–359 (2008)
Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)
Hirschmller, H., Scharstein, D.: Evaluation of stereo matching costs on images with radiometric differences. IEEE Trans. Pattern Anal. Mach. Intell. 31(9), 1582–1599 (2009)
Scharstein, D., Szeliski, R.: A taxonomy and evaluation of dense two-frame stereo correspondence algorithms. Int. J. Comput. Vis. 47(1–3), 7–42 (2002)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable extremal regions. In: Proceedings of the British Machine Vision Conference (BMVC), Cardiff, UK, pp. 384–396 (2002)
Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Proceedings of the 7th European Conference on Computer Vision (ECCV), Copenhagen, Denmark, pp. 128–142 (2002)
Ke, Y., Sukthankar, R.: PCA-SIFT: A more distinctive representation for local image descriptors. In: Proceedings of the Computer Vision and Pattern Recognition (CVPR), Washington, DC, USA, pp. 506–513 (2004)
Liu, C., Yuen, J., Torralba, A., Sivic, J., Freeman, W. T.: SIFT flow: dense correspondence across different scenes. In: Proceedings of the 10th European Conference on Computer Vision (ECCV), Marseille, France, pp. 28–42 (2008)
Juan, L., Gwun, O.: A comparison of SIFT, PCA-SIFT and SURF. Int. J. Image Process. 3(4), 143–152 (2009)
Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE Trans. Pattern Anal. Mach. Intell. 27(10), 1615–1630 (2005)
Nauge, M., Larabi, M.-C., Fernandez-Maloigne, C.: A statistical study of the correlation between interest points and gaze points. In: Proceedings of the SPIE Conference Human Vision and Electronic Imaging XVII, Burlingame, California, USA (2012)
Harding, P., Robertson, N. M.: A Comparison of Feature Detectors with Passive and Task-Based Visual Saliency. In: Proceedings of the 16th Scandinavian Conference on Image Analysis (SCIA), Oslo, Norway, pp. 716–725 (2009)
Harding, P., Robertson, N.M.: Visual saliency from image features with application to compression. Cogn. Comput. 5(1), 76–98 (2013)
Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice Hall, New Jersey (2007)
ISO/IEC JTC1/SC29/WG11: Call for Proposals on 3D Video Coding Technology. Doc. N12036, Geneva, Switzerland (2011)
ISO/IEC JTC1/SC29/WG11: Report on Experimental Framework for 3D Video Coding. Doc. N11631, Guangzhou, China (2010)
Corrigan, D., Pitié, F., Marcin, G., Kearney, G., Morris, V., Rankin, A; Linnane, M., O’Deax, M., Leez, C., Kokaram, A.: A video database for the development of stereo-3D post-production algorithms. J. Virtual Real. Broadcast. 10 (2013). https://www.jvrb.org/past-issues/10.2013/3780/
Bosc, E., Hanhart, P., Le Callet, P., Ebrahimi, T.: A quality assessment protocol for Free-viewpoint video sequences synthesized from decompressed depth data. In: Proceedings of the Fifth International Workshop on Quality of Multimedia Experience (QoMEX), Klagenfurt am Wrthersee, Austria, pp. 100–105 (2013)
ITU-R Rec. BT.500.: Methodology for the subjective assessment of the quality of television pictures, 46 pp. Geneva, Switzerland (2012)
Sharma, G., Wu, W., Dalal, E.N.: The CIEDE2000 color-difference formula: implementation notes, supplementary test data, and mathematical observations. Color. Res. Appl. 30(1), 21–30 (2005)
Westland, S., Ripamonti, C., Cheung, V.: Computational Colour Science Using MATLAB, 2nd edn. Wiley-ISandT series in Imaging Science and Technology, New York (2012)
Mantiuk, R., Kim, K.J., Rempel, A.G., Heidrich, W.: HDR-VDP-2: a calibrated visual metric for visibility and quality predictions in all luminance conditions. ACM Trans. Graph 30(4), 1–40 (2011)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Fezza, S.A., Larabi, MC. Color calibration of multi-view video plus depth for advanced 3D video. SIViP 9 (Suppl 1), 177–191 (2015). https://doi.org/10.1007/s11760-015-0761-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-015-0761-9