Skip to main content
Log in

Identification of precancerous lesions by multispectral gastroendoscopy

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Gastric cancer is one of the fifth most deadly cancers worldwide. Nowadays the diagnosis is performed through gastroendoscopy under white light and histological analysis. However, the precancerous lesions are multifocalized and present low differences with respect to healthy tissue. Several systems have been proposed based on light tissue interaction to improve the visualization of malignancies. However, these systems are limited to few wavelengths. In this paper, we propose a minimally invasive technique based on multispectral imaging and a methodology to identify malignancies in the stomach. We developed a multispectral gastroendoscopic system compatible with current gastroendoscopes, where only the illumination is changed. The spectra are extracted from the acquired multispectral images in order to compute statistical features that are used to classify the data in two classes: healthy and malignant. The features are ranked by pooled variance t test to train three classifiers. Neural networks using generalized relevance learning vector quantization, support vector machine (SVM) with a Gaussian kernel and k-nn are evaluated using leave one patient out cross-validation. Taking into consideration the data collected in this work, the quantitative results from the classification using SVM show high accuracy and sensitivity using a low number of features. These results show the ability to discriminate malignancies of the gastric tissue. Therefore, multispectral imaging could help in the identification of malignancies during gastroendoscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Akturk, O., Ulusoy, C.: Prognosis in the cancer of the stomach. In: D. Lazar (ed.) Gastric Carcinoma—New Insights into Current Management, pp. 260–262. InTech, Rijeka, Croatia (2013)

  2. Barber, D.: Bayesian Reasoning and Machine Learning. Cambridge University Press, Cambridge (2012)

    MATH  Google Scholar 

  3. Bergen, J., Anandan, P., Hanna, K., Hingorani, R.: Hierarchical model-based motion estimation. In: Sandini, G. (ed.) Computer Vision ECCV’92. Lecture Notes in Computer Science, vol. 588, pp. 237–252. Springer, Berlin (1992)

  4. Bigio, I.J., Mourant, J.R.: Optical biopsy. In: Driggers, R. (ed.) Encyclopedia of Optical Engineering, pp. 1577–1593. Marcel Dekker, New York (2003)

    Google Scholar 

  5. Borisova, E., Vladimirov, B., Ivanova, R., Avramov, L.: Light-induced fluorescence techniques for gastrointestinal tumour detection. In: O. Pascu, A. Seicean (eds.) New Techniques in Gastrointestinal Endoscopy, pp. 231–252. InTech, Rijeka, Croatia (2011)

  6. Buchner, A.M., Sharma, P., Wallace, M.B.: Contrast enhanced endoscopy chromo and optical contrast techniques. In: Cohen, J. (ed.) Successful Training in Gastrointestinal Endoscopy, pp. 156–169. Blackwell, Oxford (2011)

    Google Scholar 

  7. Correa, P., Piazuelo, M.B.: The gastric precancerous cascade. J. Dig. Dis. 13(1), 2–9 (2012)

    Article  Google Scholar 

  8. Dietterich, T.: Ensemble methods in machine learning. In: Multiple Classifier Systems, Lecture Notes in Computer Science, vol. 1857, pp. 1–15. Springer, Berlin (2000)

  9. Du, Y., Chang, C.I., Ren, H., Chang, C.C., Jensen, J.O., DAmico, F.M.: New hyperspectral discrimination measure for spectral characterization. Opt. Eng. 43(8), 1777–1786 (2004)

    Article  Google Scholar 

  10. Ferlay, J., Soerjomataram, I., Ervik, M., Dikshit, R., Eser, S., Mathers, C., Rebelo, M., Parkin, D., Forman, D., Bray, F.: GLOBOCAN 2012 v1.0, Cancer Incidence and Mortality Worldwide: IARC CancerBase No. 11. Lyon, France: International Agency for Research on Cancer (2013). http://globocan.iarc.fr

  11. Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler, D.: Support vector machine classification and validation of cancer tissue samples using microarray expression data. Bioinformatics 16(10), 906–914 (2000)

    Article  Google Scholar 

  12. Galeano, J., Jolivot, R., Benezeth, Y., Marzani, F., Emile, J., Lamarque, D.: Analysis of multispectral images of excised colon tissue samples based on genetic algorithms. In: Eighth International Conference on Signal Image Technology and Internet Based Systems (SITIS), 2012, pp. 833–838 (2012)

  13. Ge, Z., Schomacker, K.T., Nishioka, N.S.: Identification of colonic dysplasia and neoplasia by diffuse reflectance spectroscopy and pattern recognition techniques. Appl. Spectrosc. 52(6), 833–839 (1998)

    Article  Google Scholar 

  14. Guyon, I., Elisseeff, A.: An introduction to variable and feature selection. J. Mach. Learn. Res. 3, 1157–1182 (2003)

    MATH  Google Scholar 

  15. Hammer, B., Villmann, T.: Generalized relevance learning vector quantization. Neural Netw. 15(89), 1059–1068 (2002)

    Article  Google Scholar 

  16. Hegenbart, S., Uhl, A., Wimmer, G., Vecsei, A.: On the effects of de-interlacing on the classification accuracy of interlaced endoscopic videos with indication for celiac disease. In: IEEE 26th International Symposium on Computer-Based Medical Systems (CBMS), 2013, pp. 137–142 (2013)

  17. Jain, A., Zongker, D.: Feature selection: evaluation, application, and small sample performance. IEEE Trans. Pattern Anal. Mach. Intell. 19(2), 153–158 (1997)

    Article  Google Scholar 

  18. Jolivot, R., Vabres, P., Marzani, F.: Reconstruction of hyperspectral cutaneous data from an artificial neural network-based multispectral imaging system. Comput. Med. Imaging Graph. 35(2), 85–88 (2011)

    Article  Google Scholar 

  19. Kenny, P.: The Biology of Cancer: Stages of Cancer Development. Chelsea House, New York (2007)

    Google Scholar 

  20. Kida, M., Kobayashi, K., Saigenji, K.: Routine chromoendoscopy for gastrointestinal diseases: indications revised. Endoscopy 35(7), 590–596 (2003)

    Article  Google Scholar 

  21. Kiyotoki, S., Nishikawa, J., Okamoto, T., Hamabe, K., Saito, M., Goto, A., Fujita, Y., Hamamoto, Y., Takeuchi, Y., Satori, S., Sakaida, I.: New method for detection of gastric cancer by hyperspectral imaging: a pilot study. J. Biomed. Opt. 18(2), 26010 (2013)

    Article  Google Scholar 

  22. Leitner, R., Biasio, M.D., Arnold, T., Dinh, C.V., Loog, M., Duin, R.P.: Multi-spectral video endoscopy system for the detection of cancerous tissue. Pattern Recognit. Lett. 34(1), 85–93 (2013)

    Article  Google Scholar 

  23. Manolakis, D., Lockwood, R., Cooley, T., Jacobson, J.: Is there a best hyperspectral detection algorithm? In: Proceedings of SPIE Algorithms and Technologies for Multispectral, Hyperspectral and ultraspectral Imagery XV 7334, pp. 733402–733416 (2009)

  24. Martin, M., Wabuyele, M., Chen, K., Kasili, P., Panjehpour, M., Phan, M., Overholt, B., Cunningham, G., Wilson, D., DeNovo, R., Vo-Dinh, T.: Development of an advanced hyperspectral imaging (HSI) system with applications for cancer detection. Ann. Biomed. Eng. 34(6), 1061–1068 (2006)

    Article  Google Scholar 

  25. Mukherjee, A., Velez-Reyes, M., Roysam, B.: Interest points for hyperspectral image data. IEEE Trans. Geosci. Remote Sens. 47(3), 748–760 (2009)

    Article  Google Scholar 

  26. Schneider, P., Biehl, M., Hammer, B.: Distance learning in discriminative vector quantization. Neural Comput. 21(10), 2942–2969 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Song, L.M.W.K., Adler, D.G., Conway, J.D., Diehl, D.L., Farraye, F.A., Kantsevoy, S.V., Kwon, R., Mamula, P., Rodriguez, B., Shah, R.J., Tierney, W.M.: Narrow band imaging and multiband imaging. Gastrointest. Endosc. 67(4), 581–589 (2008)

    Article  Google Scholar 

  28. Tomatis, S., Carrara, M., Bono, A., Bartoli, C., Lualdi, M., Tragni, G., Colombo, A., Marchesini, R.: Automated melanoma detection with a novel multispectral imaging system: results of a prospective study. Phys. Med. Biol. 50(8), 1675 (2005)

    Article  Google Scholar 

  29. Wang, J.J.Y., Bensmail, H., Gao, X.: Multiple graph regularized nonnegative matrix factorization. Pattern Recognit. 46(10), 2840–2847 (2013)

    Article  Google Scholar 

  30. Wang, J.J.Y., Bensmail, H., Gao, X.: Feature selection and multi-kernel learning for sparse representation on a manifold. Neural Netw. 51, 9–16 (2014)

    Article  MATH  Google Scholar 

  31. Xu, G., Hua, J.Z.: Asymptotic optimality and efficient computation of the leave-subject-out cross-validation. Ann. Stat. 40(6), 3003–3030 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  32. Zuiderveld, K.: Contrast limited adaptive histograph equalization. In: Heckbert, P.S. (ed.) Graphic Gems IV, pp. 474–485. Academic press, San Diego (1994)

    Chapter  Google Scholar 

Download references

Acknowledgments

This research was supported by the Initiatives d’Excellence (IDEX) Paris-Saclay, France, the Conseil Regional de Bourgogne, France and the Fond Européen de Développement Régional (FEDER).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio E. Martinez-Herrera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez-Herrera, S.E., Benezeth, Y., Boffety, M. et al. Identification of precancerous lesions by multispectral gastroendoscopy. SIViP 10, 455–462 (2016). https://doi.org/10.1007/s11760-015-0779-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-015-0779-z

Keywords

Navigation