Skip to main content
Log in

Identifying an autoregressive process disturbed by a moving-average noise using inner–outer factorization

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper deals with the identification of an autoregressive (AR) process disturbed by an additive moving-average (MA) noise. Our approach operates as follows: Firstly, the AR parameters are estimated by using the overdetermined high-order Yule–Walker equations. The variance of the AR process driving process can be deduced by means of an orthogonal projection between two types of estimates of AR process correlation vectors. Then, the correlation sequence of the MA noise is estimated. Secondly, the MA parameters are obtained by using inner–outer factorization. To study the relevance of the resulting method, we compare it with existing algorithms, and we analyze the identifiability limits. The identification approach is then combined with Kalman filtering for channel estimation in mobile communication systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. In this case, the exterior of the unit disk in the z-plane plays the role of the unit disk when using the z-transform.

  2. More particularly, the square of its 2-norm defined by: \(\parallel .\parallel _2^2=\tilde{\mathbf {a}}\tilde{\mathbf {a}}^T\) and its \(\infty \)-norm defined by \(\parallel .\parallel _{\infty }=max \lbrace (a_i-\hat{a}_i)\rbrace _{i=1 \ldots p}\).

  3. It should be noted that the channel is approximated with high-order AR model. Here, we assume a second-order AR model to approximate the channel as an example.

References

  1. Nehorai, A., Stoica, P.: Adaptive algorithms for constrained ARMA signals in the presence of noise. IEEE Trans. Acoust. Speech Sign. Process. 36(8), 1282–1291 (1988)

    Article  MathSciNet  Google Scholar 

  2. Petitjean, J., Diversi, R., Grivel, E., Guidorzi, R., Roussilhe, P.: Recursive errors-in-variables approach for AR parameter estimation from noisy observations. Application to radar sea clutter rejection. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 3401–3404 (2009)

  3. Wu, W., Chen, P.: Adaptive AR modeling in white Gaussian noise. IEEE Trans. Sign. Process. 45(5), 1184–1191 (1997)

    Article  Google Scholar 

  4. Chung, W., Un, C.: Iterative autoregressive parameter estimation in presence of additive white noise. IEEE Electron. Lett. 27(20), 1800–1802 (1991)

    Article  Google Scholar 

  5. Davila, C.: A subspace approach to estimation of autoregressive parameters from noisy measurements. IEEE Trans. Sign. Process. 46(2), 530–534 (1998)

    Article  Google Scholar 

  6. Petitjean, J., Grivel, E., Bobillet, W., Roussilhe, P.: Multichannel AR parameter estimation from noisy observations as an errors-in-variables issue. Signal, Image Video Process. 4(2), 209–220 (2010)

    Article  MATH  Google Scholar 

  7. Bobillet, W., Diversi, R., Grivel, E., Guidorzi, R., Najim, M., Soverini, U.: Speech enhancement combining optimal smoothing and Errors-In-Variables identification of noisy AR processes. IEEE Trans. Sign. Process. 55(12), 5564–5578 (2007)

    Article  MathSciNet  Google Scholar 

  8. Zheng, W.: Estimation of the parameters of autoregressive signals from colored noise-corrupted measurements. IEEE Sign. Process. Lett. 7(7), 201–204 (2000)

    Article  Google Scholar 

  9. Mahmoudi, A., Karimi, M.: Parameter estimation of autoregressive signals from observations corrupted with colored noise. Sign. Process. 90(1), 157–164 (2010)

    Article  MATH  Google Scholar 

  10. Mahmoudi, A., Karimi, M., Amindavar, H.: Parameter estimation of autoregressive signals in presence of colored AR(1) noise as a quadratic eigenvalue problem. Sign. Process. 92(4), 1151–1156 (2012)

    Article  Google Scholar 

  11. Diversi, R., Ijima, H., Grivel, E.: Prediction error method to estimate the AR parameters when the process is disturbed by a colored noise. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), pp. 6143–6147 (2013)

  12. Gibson, J., Boneung, K., Gray, S.: Filtering of colored noise for speech enhancement and coding. IEEE Trans. Sign. Process. 39(8), 1732–1742 (1991)

    Article  Google Scholar 

  13. Durbin, J.: Efficient estimation of parameters in moving average models. Biometrika 46(3/4), 306–316 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  14. Stoica, P., McKelvey, T., Mari, J.: MA estimation in polynomial time. IEEE Trans. Sign. Process. 48(7), 1999–2012 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  15. Dumitrescu, B., Tabus, I., Stoica, P.: On the parameterization of positive real sequences and MA parameter estimation. IEEE Trans. Sign. Process. 49(11), 2630–2639 (2001)

    Article  MathSciNet  Google Scholar 

  16. Moses, R., Liu, D.: Optimal nonnegative definite approximations of estimated moving average covariance sequences. IEEE Trans. Sign. Process. 39(9), 2007–2015 (1991)

    Article  MATH  Google Scholar 

  17. Stoica, A., Moses, R., Stoica, P.: Enforcing positiveness on estimated spectral densities. Electron. Lett. 29(23), 2009–2011 (1993)

  18. Bhansali, R.: A simulation study of autoregressive and window estimators of the inverse correlation function. J R Stat Soc Appl Stat 32(2), 141–149 (1983)

    MATH  MathSciNet  Google Scholar 

  19. Rusek, F., Anderson, J.: Constrained capacities for faster-than-Nyquist signaling. IEEE Trans. Inf. Theory 55(2), 764–775 (2009)

    Article  MathSciNet  Google Scholar 

  20. Box, G., Jenkins, D.: Time Series Analysis, Forecasting and Control. Hoden-Day, San Francisco (1970)

    MATH  Google Scholar 

  21. Ljung, L.: System Identification—Theory for the User. Prentice Hall, Englewood Cliffs, NJ (1999)

    Google Scholar 

  22. Merchan, F., Turcu, F., Grivel, E., Najim, M.: Rayleigh fading channel simulator based on inner-outer factorization. Sign. Process. 90(1), 24–33 (2010)

    Article  MATH  Google Scholar 

  23. Lukacs, E., King, E.: A property of the normal distribution. Ann. Math. Stat. 25(2), 389–394 (1954)

    Article  MATH  MathSciNet  Google Scholar 

  24. Najim, M.: Modeling Estimation and Optimal Filtering in Signal Processing. Chapter 3. ISTE Ltd and Wiley, New York (2008)

    Book  Google Scholar 

  25. Hoffman, K.: Banach Spaces of Analytic Functions. Prentice Hall Inc., Englewood Cliffs NJ (1962)

    MATH  Google Scholar 

  26. Nikias, C., Mendel, J.: Signal processing with higher order spectra. IEEE Sign. Process. Mag. 10(3), 10–37 (1993)

    Article  Google Scholar 

  27. Lii, K., Rosenblatt, M.: Deconvolution and estimation of transfer function phase and coefficients for nonGaussian linear processes. Ann. Stat. 10(4), 1195–1208 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  28. Grivel, E., Gabrea, M., Najim, M.: Speech enhancement as a realization issue. Sign. Process., Elsevier 82(12), 1963–1978 (2002)

    Article  MATH  Google Scholar 

  29. Grolleau, J., Grivel, E., Najim, M.: Subspace identification method for Rayleigh channel estimation. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), vol. 3, pp. 449–452 (2007)

  30. Jamoos, A., Abdou, A., Abdel-Nour, H., Grivel, E.: Two cross-coupled H\(\infty \) filters for fading channel estimation in OFDM systems. In: Proceedings of the Computer, Information, Systems Sciences and Engineering (CISSE), pp. 349–353. Springer, Heidelberg (2010)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Abdou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdou, A., Turcu, F., Grivel, E. et al. Identifying an autoregressive process disturbed by a moving-average noise using inner–outer factorization. SIViP 9 (Suppl 1), 235–244 (2015). https://doi.org/10.1007/s11760-015-0803-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-015-0803-3

Keywords

Navigation