Abstract
In this paper, we introduce the completed local binary patterns (CLBP) operator for the first time on remote sensing land-use scene classification. To further improve the representation power of CLBP, we propose a multi-scale CLBP (MS-CLBP) descriptor to characterize the dominant texture features in multiple resolutions. Two different kinds of implementations of MS-CLBP equipped with the kernel-based extreme learning machine are investigated and compared in terms of classification accuracy and computational complexity. The proposed approach is extensively tested on the 21-class land-use dataset and the 19-class satellite scene dataset showing a consistent increase on performance when compared to the state of the arts.










Similar content being viewed by others
References
Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization with bags of keypoints. In: Proceedings of ECCV Workshop on Statistical Learning in Computer Vision, Prague, pp. 1–2 (2004)
Yang, Y., Newsam, S.: Spatial pyramid co-occurrence for image classification. In: Proceedings of International Conference on Computer Vision, Barcelona, Spain, pp. 1465–1472 (2011)
Yang, Y., Newsam, S.: Bag-of-visual-words and spatial extensions for land-use classification. In: Proceedings of the 18th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, San Jose, CA, pp. 270–279 (2010)
Zhao, L., Tang, P., Huo, L.: A 2-D wavelet decomposition-based bag-of-visual-words model for land-use scene classification. Int. J. Remote Sens. 35(6), 2296–2310 (2014)
Lazebnik, S., Schmid, C., Ponce, J.: Beyond bags of features: spatial pyramid matching for recognizing natural scene categories. In: Proceedings of the IEEE Computer Vision and Pattern Recognition, New York, NY, pp. 2169–2178 (2006)
Zhou, L., Zhou, Z., Hu, D.: Scene classification using a multi-resolution bag-of-features model. Pattern Recognit. 46(1), 424–433 (2013)
Zhao, L., Tang, P., Huo, L.: Land-use scene classification using a concentric circle-structured multiscale bag-of-visual-words model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 7(12), 4620–4631 (2014)
Chen, S., Tian, Y.: Pyramid of spatial relatons for scene-level land use classification. IEEE Trans. Geosci. Remote Sens. 53(4), 1947–1957 (2015)
Lowe, D.G.: Distinctive image features from scale-invariant keypoints. Int. J. Comput. Vis. 60(2), 91–110 (2004)
Risojevic, V., Babic, Z.: Aerial image classification using structural texture similarity. In: Proceedings of IEEE International Symposium on Signal Processing and Information Technology, Bilbao, Spain, pp. 190–195 (2011)
Risojevic, V., Babic, Z.: Fusion of global and local descriptors for remote sensing image classification. IEEE Geosci. Remote Sens. Lett. 10(4), 836–840 (2013)
Cheriyadat, A.M.: Unsupervised feature learning for aerial scene classification. IEEE Trans. Geosci. Remote Sens. 52(1), 439–451 (2014)
Oliva, A., Torralba, A.: Modeling the shape of the scene: a holistic representation of the spatial envelope. Int. J. Comput. Vis. 42(3), 145–175 (2001)
Tola, E., Lepetit, V., Fua, P.: Daisy: an efficient dense descriptor applied to wide-baseline stereo. IEEE Trans. Pattern Anal. Mach. Intell. 32(5), 815–830 (2010)
Zheng, X., Sun, X., Fu, K., Wang, H.: Automatic annotation of satellite images via multifeature joint sparse coding with spatial relation constraint. IEEE Geosci. Remote Sens. Lett. 10(4), 652–656 (2013)
Zhang, Y., Zheng, X., Liu, G., Sun, X., Wang, H., Fu, K.: Semi-supervised manifold learning based multigraph fusion for high-resolution remote sensing image classification. IEEE Geosci. Remote Sens. Lett. 11(2), 464–468 (2014)
Ojala, T., Pietikainen, M., Maenpaa, T.T.: Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans. Pattern Anal. Mach. Intell. 24(7), 971–987 (2002)
Li, W., Chen, C., Su, H., Du, Q.: Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 53(7), 3681–3693 (2015)
Chen, C., Jafari, R., Kehtarnavaz, N.: Action Recognition from depth sequences using depth motion maps-based local binary patterns. In: Proceedings of the IEEE Winter Conference on Applications of Computer Vision, Waikoloa Beach, HI, pp. 1092–1099 (2015)
Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern operator for texture classification. IEEE Trans. Image Process. 19(6), 1657–1663 (2010)
Huang, G.B., Zhou, H., Ding, X., Zhang, R.: Extreme learning machine for regression and multiclass classification. IEEE Trans. Syst. Man Cybern. Part B Cybern. 42(2), 513–529 (2012)
Huang, G.B., Zhu, Q.Y., Siew, C.K.: Extreme learning machine: theory and applications. Neurocomputing 70(1–3), 489–501 (2006)
Dai, D., Yang, W.: Satellite image classification via two-layer sparse coding with biased image representation. IEEE Geosci. Remote Sens. Lett. 8(1), 173176 (2011)
Sheng, G., Yang, W., Xu, T., Sun, H.: High-resolution satellite scene classification using a sparse coding based multiple feature combination. Int. J. Remote Sens. 33(8), 2395–2412 (2011)
Jolliffe, I.: Principal Component Analysis, 2nd edn. Springer, New York (2002)
Zhang, F., Du, B., Zhang, L.: Saliency-guided unsupervised feature learning for scene classification. IEEE Trans. Geosci. Remote Sens. 53(4), 2175–2184 (2015)
Shao, W., Yang, W., Xia, G.S., Liu, G.: A hierarchical scheme of multiple feature fusion for high-resolution satellite scene categorization. In: Proceedings of the 9th International Conference on Computer Vision Systems, St. Petersburg, Russia, pp. 324–333 (2013)
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Chen, C., Zhang, B., Su, H. et al. Land-use scene classification using multi-scale completed local binary patterns. SIViP 10, 745–752 (2016). https://doi.org/10.1007/s11760-015-0804-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-015-0804-2