Skip to main content
Log in

Propagating sparse labels through edge-aware filters

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, we show how linear, but not necessarily shift-invariant, filters can be used to propagate sparse labels throughout an image. We propose a new propagation method based on the domain transform filter, a linear, shift-varying filter whose kernel width varies based on local edge information. We contrast this against the more well-known energy minimization approach and show that it can produce significantly better results when the input labels contain errors. Finally, we show how minimization-based methods are better suited for purely user-guided applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Notes

  1. A filter is linear if \(h\{Ax[n] + By[n]\} = Ah\{x[n]\} + Bh\{y[n]\}.\)

  2. \(\sigma _s\) has minimal effect provided it is relatively large. See [15] for more information on the parameters.

References

  1. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  2. Boykov, Y., Funka-Lea, G.: Graph cuts and efficient N-D image segmentation. Int. J. Comput. Vis. 70(2), 109–131 (2006). doi:10.1007/s11263-006-7934-5

    Article  Google Scholar 

  3. Szeliski, R.: Computer vision: algorithms and applications. Springer, (2010). http://szeliski.org/Book/

  4. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  5. Levin, A., Lischinski, D., Weiss, Y.: Colorization using optimization. ACM Trans. Graph. 23(3), 689–694 (2004). doi:10.1145/1015706.1015780

    Article  Google Scholar 

  6. Lischinski, D., Farbman, Z., Uyttendaele, M., Szeliski, R.: Interactive local adjustment of tonal values. ACM Trans. Graph. 25(3), 646–653 (2006). doi:10.1145/1141911.1141936

    Article  Google Scholar 

  7. Guttmann, M., Wolf, L., Cohen-Or, D.: Semi-automatic Stereo extraction from video footage. In: Proceedings of the IEEE International Conference on Computer Vision (ICCV), (2009)

  8. Wang, O., Lang, M., Frei, M., Hornung, A., Smolic, A., Gross,M.: Stereobrush: interactive 2d–3d conversion using discontinuous warps. In: Proceedings of the Eighth Eurographics Symposium on Sketch-Based Interfaces and Modeling, ser. SBIM ’11. New York, NY, USA: ACM, pp. 47–54 (2011). http://doi.acm.org/10.1145/2021164.2021173

  9. Phan, R., Androutsos, D.: Robust semi-automatic depth map generation in unconstrained images and video sequences for 2d to stereoscopic 3d conversion. IEEE Trans. Multimed. 16(1), 122–136 (2014)

    Article  Google Scholar 

  10. Ward, B., Kang, S.B., Bennett, E.: Depth director: a system for adding depth to movies. IEEE Comput. Graph. Appl. 31(1), 36–48 (2011)

    Article  Google Scholar 

  11. Liao, M., Gao, J., Yang, R., Gong, M.: Video stereolization: combining motion analysis with user interaction. IEEE Trans. Vis. Comput. Graph. 18(7), 1079–1088 (2012)

    Article  Google Scholar 

  12. Becker, M., Baron, M., Kondermann, D., Bussler, M., Helzle,V.: Movie dimensionalization via sparse user annotations. In: 3DTV-Conference: The True Vision-Capture, Transmission and Dispaly of 3D Video (3DTV-CON), 2013, pp. 1–4 (2013)

  13. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In: Proceedings of the 23rd ACM National Conference, ser. ACM ’68. New York, NY, USA: ACM, pp. 517–524 (1968). (Online) http://doi.acm.org/10.1145/800186.810616

  14. Fattal, R.: Edge-avoiding wavelets and their applications. ACM Trans. Graph. 28(3), 1–10 (2009)

    Article  Google Scholar 

  15. Gastal, E.S.L., Oliveira, M.M.: Domain transform for edge-aware image and video processing. ACM TOG 30(4), 69:1–69:12 (2011)

    Article  Google Scholar 

  16. He, K., Sun, J., Tang, X.: Guided image filtering. IEEE Trans. Pattern Anal. Mach. Intell. 35(6), 1397–1409 (2013)

    Article  Google Scholar 

  17. Lang, M., Wang, O., Aydin, T., Smolic, A., Gross, M.: Practical temporal consistency for image-based graphics applications. ACM Trans. Graph. 31(4), 34:1–34:8 (2012). doi:10.1145/2185520.2185530

    Article  Google Scholar 

  18. Rzeszutek, R., Androutsos, D.: A framework for estimating relative depth in video. Comput. Vis. Image Underst. 133(0), 15–29 (2015). http://www.sciencedirect.com/science/article/pii/S107731421500003X

  19. Rzeszutek, R., Androutsos, D.: Label propagation through edge-preserving filters. In: 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 599–603 (2014)

  20. Stefanoski, N., Bal, C., Lang, M., Wang, O., Smolic, A.: Depth estimation and depth enhancement by diffusion of depth features. In: 20th IEEE International Conference on Image Processing (ICIP), pp. 1247–1251 (2013)

  21. Paris, S., Durand, F.: A fast approximation of the bilateral filter using a signal processing approach. Int. J. Comput. Vis. 81(1), 24–52 (2009). doi:10.1007/s11263-007-0110-8

    Article  Google Scholar 

  22. Chaudhury, K.: Acceleration of the shiftable o(1) algorithm for bilateral filtering and nonlocal means. IEEE Trans. Image Process. 22(4), 1291–1300 (2013)

    Article  MathSciNet  Google Scholar 

  23. Phan, R., Rzeszutek, R., Androutsos, D.: Semi-automatic 2d to 3d image conversion using scale-space random walks and a graph cuts based depth prior. In: 18th IEEE International Conference on Image Processing (ICIP), pp. 865–868 (2011)

  24. Barash, D.: Fundamental relationship between bilateral filtering, adaptive smoothing, and the nonlinear diffusion equation. IEEE Trans. Pattern Anal. Mach. Intell. 24(6), 844–847 (2002)

    Article  Google Scholar 

  25. Scharstein, D., Hirschmuller, H., Kitajima, Y., Krathwohl, G., Nesic, N., Wang, X., Westling, P.: High-resolution stereo datasets with subpixel-accurate ground truth. In: German Conference on Pattern Recognition (GCPR 2014), September 2014. http://www.cs.middlebury.edu/~schar/papers/datasets-gcpr2014.pdf

  26. Shi, J., Tomasi, C.: Good features to track. In: Computer Vision and Pattern Recognition, 1994. In: Proceedings of the IEEE Computer Society Conference on CVPR ’94, pp. 593–600 (1994)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Rzeszutek.

Additional information

This work was done while R. Rzeszutek was a Ph.D. candidate at Ryerson University.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rzeszutek, R., Androutsos, D. Propagating sparse labels through edge-aware filters. SIViP 9 (Suppl 1), 17–24 (2015). https://doi.org/10.1007/s11760-015-0833-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-015-0833-x

Keywords

Navigation