Skip to main content

Advertisement

Log in

An optimal complexity H.264/AVC encoding for video streaming over next generation of wireless multimedia sensor networks

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The next generation of sensor node such as Lotus mote enables higher performance, low power consumption, higher storage/memory and higher speed processing capability than the older generation, such as TelosB or MicaZ motes, which facilitates multimedia data pre-processing and compression in wireless multimedia sensor network (WMSN). In WMSNs, multimedia compression is the main issue that performed on a multimedia sensor node because the complexity of multimedia coding can cause a major energy consumption problem. This paper proposes an optimal complexity H.264 encoding for video streaming over next generation of WMSN. It develops the mathematical model for achieving optimal complexity encoding and proposed the most reliable H.264 encoder configuration setting on H.264 coding. The proposed mechanism ensures an optimal encoding complexity, less power consumption and visual quality of the multimedia. The experimental results of this research give an evidence to verify that the proposed mechanism guarantees high QoS performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Akyildiz, I.F., Melodia, T., Chowdury, K.R.: Wireless multimedia sensor networks: a survey. Wirel. Commun. 14(6), 32–39 (2007)

    Article  Google Scholar 

  2. Costa, D.G., Guedes, L.A.: A survey on multimedia-based cross-layer optimization in visual sensor networks. Sensors 11(5), 5439–5468 (2011)

    Article  Google Scholar 

  3. Wu, F., Hong, W.D.: A survey on the nodes of wireless multimedia sensor networks. Int. J. Adv. Comput. Technol. 5(5), 1260–1275 (2013)

    Google Scholar 

  4. IEEE 802.15.4 Standard, 2003, Part 15.4: Wireless medium access control (MAC) and physical layer (PHY) specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE Standard for Information Technology, IEEE-SA Standards Board

  5. Graf, M.: VBR video over ATM: reducing network resource requirements through end system traffic shaping, INFOCOM ’97, pp. 48–57 (1997)

  6. Shen, H., Bai, G., Zhao, L., Tang, Z.: An adaptive opportunistic network coding mechanism in wireless multimedia sensor networks. Int. J. Distrib. Sens. Networks 1–13 (2012)

  7. Pudlewski, S., Prasanna, A., Melodia, T.: Compressed-sensing-enabled video streaming for wireless multimedia sensor networks. Trans. Mobile Comput. 11(6), 1060–1072 (2012)

    Article  Google Scholar 

  8. Xue, Z., Loo, K.K., Cosmas, J., Yip, P.Y.: Distributed video coding in wireless multimedia sensor network for multimedia broadcasting. WSEAS Trans. Commun. 7(5), 418–427 (2008)

    Google Scholar 

  9. Ostermann, J., Bormans, J., List, P., Marpe, D., Narroschke, M., Pereira, F., Stockhammer, T., Wedi, T.: Video coding with H.264/AVC: tools, performance, and complexity. Mag. Circuits Syst. 4(1), 7–28 (2004)

    Article  Google Scholar 

  10. Ma, Z., Hu, H., Wang, Y.: On complexity modeling of H.264/AVC video decoding and its application for energy efficient decoding. Trans. Multimed. 13(6), 1240–1255 (2011)

    Article  MathSciNet  Google Scholar 

  11. Semsarzadeh, M., Hashemi, M.R., Shirmohammadi, S.: A generic, comprehensive and granular decoder complexity model for the H.264/AVC standard. J. Vis. Commun. Image Represent. 25(7), 1686–1703 (2014)

    Article  Google Scholar 

  12. Li, X., Wien, M., Ohm, J.-R.: Rate-complexity-distortion optimization for hybrid video coding. IEEE Trans. Circ. Syst. Video Technol. 21, 957–970 (2011)

    Article  Google Scholar 

  13. Balaji, L., Thyagharajan, K. K.: H.264 SVC complexity reduction based on likelihood mode decision. Sci. World J. 1–10 (2015)

  14. Correa, G., Assuncao, P., Agostini, L., Silva Cruz, L.A.: Performance and computational complexity assessment of high-efficiency video encoders. Trans. Circuits Syst. Video Technol. 22(12), 1899–1909 (2012)

  15. Tan, Y. H., Lee, W. S., Tham, J. Y., Rahardja, S., Lye, K. M.: Complexity scalable H.264/AVC encoding. Trans. Circuits Syst. Video Technol. 20 (9), 1271–1275 (2010)

  16. Su; L., Lu, Y., Wu, F., Li, S., Gao, W.: Complexity-Constrained H.264 Video Encoding, Trans. On Circuits and Systems for Video Technology, 19(4), 477–490 (2009)

  17. Pu, W., Lu, Y., Wu, F.: Joint power-distortion optimization on devices with MPEG-4 AVC/H.264 codec, ICC’06, Istanbul, 441–446 (2006)

  18. He, Z., Liang, Y., Chen, L., Ahmad, I., Wu, D.: Power-rate-distortion analysis for wireless video communication under energy constraints. IEEE Trans. Circ. Syst. Video Technol. 15, 645–658 (2005)

    Article  Google Scholar 

  19. Maierbacher, G., Barros, J.: Low-complexity coding and source-optimized clustering for large-scale sensor networks. ACM Trans. Sen. Netw., 5(3), 24.1-24.32 (2009)

  20. Lee, H., Jung, B., Jung, J., Jeon, B.: Computational complexity scalable scheme for power-aware H.264/AVC encoding, IEEE International Workshop on Multimedia Signal Process, 1–6 (2009)

  21. Yu, H., Qing, L., Ma, S., Jay Kuo, C. C.: Joint rate-distortion-complexity optimization for H.264 motion search, ICME’06, 1949–1952 (2006)

  22. Sadasican, S.: An Introduction to the ARM Cortex-M3 Processor, ARM white paper, 1–17 (2006)

  23. Burd, T., Broderson, R.: Processor design for portable systems”. J. VLSI Signal Process 13(2), 203–222 (1996)

    Article  Google Scholar 

  24. Horowitz, M., Joch, A., Kossentini, F., Hallapuro, A.: H.264/AVC baseline profile decoder complexity analysis, Trans. In Circ. Sys. Video Technol., 13(7), 704–716 (2003)

  25. MEMSIC Technology, http://www.memsic.com/products/wireless-sensor-networks.html. Accessed on March 2015

  26. Ahmed, A., Fisal, N.: A real-time routing protocol with load distribution in wireless sensor networks. Elsevier Comput. Commun. J. 31(14), 3190–3203 (2013)

    Article  Google Scholar 

  27. Ahmed, A., Fisal, N.: A real-time routing protocol with mobility support and load distribution for mobile wireless sensor networks. Int. J. Sens. Netw. 15(2), 95–111 (2014)

    Article  Google Scholar 

  28. Ahmed, A.: A comparative study of QoS performance for location based and corona based real-time routing protocol in mobile wireless sensor networks”. Wirel. Netw. J. 21(3), 1015–1031 (2015)

    Article  Google Scholar 

  29. http://videocoders.com/yuv.html. Accessed on Dec 2015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adel A. Ahmed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmed, A.A. An optimal complexity H.264/AVC encoding for video streaming over next generation of wireless multimedia sensor networks. SIViP 10, 1143–1150 (2016). https://doi.org/10.1007/s11760-016-0870-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-0870-0

Keywords

Navigation