Skip to main content
Log in

A new multi-scale framework for convolutive blind source separation

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

This paper presents a new multi-scale decomposition algorithm which enables the blind separation of convolutely mixed images. The proposed algorithm uses a wavelet-based transform, called Adaptive Quincunx Lifting Scheme (AQLS), coupled with a geometric demixing algorithm called Deds. The resulting deconvolution process is made up of three steps. In the first step, the convolutely mixed images are decomposed by AQLS. Then, Deds is applied to the more relevant component to unmix the transformed images. The unmixed images are, thereafter, reconstructed using the inverse of the AQLS transform. Experiments carried out on images from various origins show the superiority of the proposed method over many widely used blind deconvolution algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Amari, S.I., Cichocki, A., Yang, H.H.: A new learning algorithm for blind source separation. Adv. Neural Inf. Process. Syst. 8, 757–763 (1996)

    Google Scholar 

  2. Comon, P.: Independent component analysis. New Concept Signal Process 36, 287–314 (1994)

    Article  MATH  Google Scholar 

  3. Bell, A., Sejnowski, T.: An information-maximization approach to blind separation and blind deconvolution. Neural Comput. 7, 1129–1159 (1995)

    Article  Google Scholar 

  4. Hyvarinen, A., Karhunen, J., Oja, E.: Independent Component Analysis. Wiley, Hoboken (2001)

    Book  Google Scholar 

  5. Cardoso, J.F.: Infomax and maximum likelihood for blind source separation. IEEE Lect. Signal Process. 4(4), 112–114 (1997)

    Article  Google Scholar 

  6. Hyvarinen, A., Oja, E.: A fast fixed-point algorithm for independent component analysis. Neural Comput. 9(7), 1483–1492 (1997)

    Article  Google Scholar 

  7. Cardoso, J.-F., Souloumiac, A.: Blind beamforming for non-Gaussian signals. IEEE Proc. F 140(6), 362–370 (1993)

    Google Scholar 

  8. Chan, T.-H., Ma, W.-K., Chi, C.-Y., Wang, Y.: A convex analysis framework for blind separation of non-negative sources. IEEE Trans. Signal Process. 56, 5120–5134 (2008)

    Article  MathSciNet  Google Scholar 

  9. Naanaa, Wady, Nuzillard, Jean-Marc: A geometric approach to blind separation of nonnegative and dependent source signals. Signal Process. 92(11), 2775–2784 (2012)

    Article  Google Scholar 

  10. Chan, T.-H., Chi, C.-Y., Huang, Y.-M., Ma, W.-K.: A convex analysis based minimum-volume enclosing simplex algorithm for hyperspectral unmixing. IEEE Trans. Signal Process. 57(11), 4418–4432 (2009)

    Article  MathSciNet  Google Scholar 

  11. Torkkola, K.: Blind separation of convolved sources based on information maximization. In Proceedings of IEEE Workshop on Neural Networks and Signal Processing (NNSP’96), Kyoto, Japan, pp. 423–432, (1996)

  12. Lee, T. W., Girolami, M., Lambert, R.: Blind separation of delayed and convolved sources. In Advances in Neural Information Processing Systems, vol. 9, pp. 758–764. MIT Press, (1997)

  13. Smaragdis, P.: Blind separation of convolved mixtures in frequency domain. Neurocomputing 22, 21–34 (1998)

    Article  MATH  Google Scholar 

  14. Dapena, A., Bugallo, M.F., Castedo, L. : Separation of convolutive mixtures of temporally-white signals: a novel Frequency-Domain Approach. 794 A. Ciaramella, R.Tagliaferri, M. Funaro In Proceedings of 3rd International Workshop on Independent Component Analysis and Blind Source Separation, San Diego, California, pp. 179–184, (2001)

  15. Ciaramella, A., Tagliaferri, R.: Separation of convolved mixtures in frequency domain ICA. Int. Math. Forum 1(16), 769–795 (2006)

  16. Sawada, H., Kameoka, H., Araki, S., Ueda, N.: Efficient Algorithms For Multichannel Extensions of Itakura-Saito Nonnegative Matrix Factorization 978-1-4673-0046-9/12 ICASSP (2012)

  17. Schobben, D.W.E., Sommen, P.C.W.: A frequency domain blind signal separation method based on de-correlation. IEEE Trans. Signal Process. 50, 1855–1865 (2002)

    Article  Google Scholar 

  18. Araki, S., Mukai, R., Makino, S., Nishikawa, T., Saruwatari, H.: The fundamental limitation of frequency domain blind source separation for convolutive mixtures of speech. IEEE Trans. Speech Audio Process. 119(2), 109–116 (2003)

    Article  MATH  Google Scholar 

  19. Zibulevsky, M., Pearlmutter, B.A., Bofill, P., Kisilev, P.: Blind source separation by sparse decomposition. In: Roberts, S.J., Everson, R.M. (eds.) Independent Component Analysis. Principles and Practice, Cambridge (2001)

    Google Scholar 

  20. Kim, C.W., Ansari, R. Cetin, A.E.: A class of linear-phase regular biorthogonal wavelets. In IEEE International Conference on Acoustics, Speech, and Signal Processing. ICASSP, vol. 4, pp. 673–676, (1992)

  21. Sweldens, W.: The lifting scheme: a new philosophy in biorthogonal wavelet constructions. SPIE Wavelet Appl. Signal Image Process. III 2569, 68–79 (1995)

    Article  Google Scholar 

  22. Cetin, A.E.: A multiresolution nonrectangular wavelet representation for two-dimensional signals. Signal Process. 32(3), 343–355 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Benazza-Benyahia, A., Pesquet, J.-C., Hattay, J., Masmoudi, H. :Blockbased adaptive vector lifting schemes for multichannel image coding. Eurasip Int. J. Image Video Process. (IJIVP) 2007(1), 10 (2007) article ID 13421

  24. Ansari, R., Cetin, A. E., Lee, S. H.: Sub-band coding of images using nonrectangular filter banks, 32nd Annual Technical Symposium. In: Proceedings of SPIE 0974, Applications of Digital Image Processing XI, p. 315, (1988). doi:10.1117/12.948473

  25. Kim, C.W., Ansari, R. : Subband decomposition procedure for quincunx sampling grids. In SPIE Conference on Visual Communication and Image Processing, (1991), pp. 112–123

  26. Kisilev, P., Zibulevsky, M., Zeevi, Y.Y.: A multiscale framework for blind separation of linearly mixed signals. J. Mach. Learn. Res. 4, 1339–1363 (2003)

    MathSciNet  MATH  Google Scholar 

  27. Virtanen, I.: Entropy correlation coefficient, a measure of statistical dependence for categorized data. Paper presented at the 15th European Meeting of Statisticians, Palermo, Italy (1982)

  28. Hattay, J., Benazza-Benyahia, A., Pesquet, J.-C.: Adaptive lifting schemes using variable-size block segmentation. In Proceedings of the ACIVS Conference, Brussels, Belgium, August 31–September 3, (2004)

  29. Donoho, D.: Denoising by soft thresholding. IEEE Trans. Inf. Theory 41(3), 613–627 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  30. Motzkin, T., Raiffa, H., Thompson, G., Thrall, R.J.: The Double Description Method. Annals of Math Studies, vol. 8, pp. 51–73. Princeton University Press, Princeton (1953)

    MATH  Google Scholar 

  31. Cochran, D., Gish, H., Sinno, D.: A geometric approach to multiple-channel signal detection. IEEE Trans. Signal Process. 43(9), 2049–2057 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamel Hattay.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belaid, S., Hattay, J., Naanaa, W. et al. A new multi-scale framework for convolutive blind source separation. SIViP 10, 1203–1210 (2016). https://doi.org/10.1007/s11760-016-0877-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-0877-6

Keywords

Navigation