Skip to main content
Log in

Adaptive enhancement of compressed SAR images

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Synthetic aperture radar (SAR) imagery is an important global all-weather surveillance and mapping satellite imagery system. As space-borne systems have a limited storage capacity, it is imperative to heavily compress SAR images, possible with lossy compression schemes. As a result, SAR images need to be enhanced in earth stations. The work reported in this paper aims to address the issue of compression artefact removal of SAR images in an adaptive manner. The SAR images, compressed using the JPEG utility at significantly low bit rates, are enhanced by adaptively removing coding artefacts and speckle noise. As edges carry significant information in satellite imagery, a significant edge image is used for edge enhancement with selective removal of noisy edges. Further, an image sharpness metric is proposed in this work to serve as an objective no-reference metric for measuring the sharpness of SAR images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Wong, T.-S., Bouman, C.A., Pollak, I.: Image enhancement using the hypothesis selection filter: theory and application to JPEG decoding. Image Process. IEEE Trans. 22(3), 898–913 (2013)

    Article  MathSciNet  Google Scholar 

  2. Bierens, L., Van Heijster, R., van Bezouwen, H.: Data reduction using real-time on-board satellite SAR processing. In: Proceedings Fourth International Workshop on Digital Signal Processing Techniques Applied to Space Communications, King’s College, London, ESA WPP, vol. 86, pp. 2–21 (1994)

  3. Donoho, D.L., Johnstone, J.M.: Ideal spatial adaptation by wavelet shrinkage. Biometrika 81(3), 425–455 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  4. Joy, J., Peter, S., John, N.: Denoising using soft thresholding. Int. J. Adv. Res. Electr. Electron. Instrum. Eng. 2(3), 1027–1031 (2013)

    Google Scholar 

  5. Chouhan, R., Biswas, P.K., Jha, R.K.: Enhancement of low-contrast images by internal noise-induced Fourier coefficient rooting. SIViP 9(12), 255–263 (2015)

    Article  Google Scholar 

  6. Santos, A., Stewart, R., Martin del Campo, B., Gustavo, D., Lopez, R., Josue, A.: Intelligent remote sensing image post-processing via two-level robust adaptive neural network computing. In: 2014 International Conference on Electronics, Communications and Computers (CONIELECOMP), pp. 22–27. IEEE (2014)

  7. Sarode, M.V., Deshmukh, P.R.: Reduction of speckle noise and image enhancement of images using filtering technique. Int. J. Adv. Technol. 2(1), 30–38 (2011)

    Google Scholar 

  8. Candes, E.J.: Ridgelets: theory and applications. Ph.D. thesis, Stanford University (1998)

  9. Candes, E.J., Donoho, D.L.: Recovering edges in ill-posed inverse problems: optimality of curvelet frames. Ann. Stat. 30, 784–842 (2002)

  10. Candes, E., Demanet, L., Donoho, D., Ying, L.: Fast discrete curvelet transforms. Multiscale Model. Simul. 5(3), 861–899 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Do, M.N., Vetterli, M.: The contourlet transform: an efficient directional multiresolution image representation. Image Process. IEEE Trans. 14(12), 2091–2106 (2005)

    Article  MathSciNet  Google Scholar 

  12. Gewei, T., Guangwu, P., Wei, L.: SAR image enhancement based on fractional Fourier transform. Open Autom. Control Syst. J. 6, 503–508 (2014)

    Article  MathSciNet  Google Scholar 

  13. Yu, Y., Acton, S.T.: Speckle reducing anisotropic diffusion. Image Process. IEEE Trans. 11(11), 1260–1270 (2002)

  14. Aja-Fernández, S., Alberola-López, C.: On the estimation of the coefficient of variation for anisotropic diffusion speckle filtering. Image Process. IEEE Trans. 15(9), 2694–2701 (2006)

    Article  Google Scholar 

  15. Parrilli, S., Poderico, M., Angelino, C.V., Verdoliva, L.: A nonlocal SAR image denoising algorithm based on LLMMSE wavelet shrinkage. Geosci. Remote Sens. IEEE Trans. 50(2), 606–616 (2012)

    Article  Google Scholar 

  16. Coifman, R.R., Donoho, D.L.: Translation-Invariant De-Noising. Springer, New York (1995)

    Book  MATH  Google Scholar 

  17. Fan, G., Cham, W.-K.: Model-based edge reconstruction for low bit-rate wavelet-compressed images. Circuits Syst. Video Technol. IEEE Trans. 10(1), 120–132 (2000)

    Article  Google Scholar 

  18. Nosratinia, A.: Enhancement of JPEG-compressed images by re-application of JPEG. J. VLSI Signal Process. Syst. Signal Image Video Technol. 27(1–2), 69–79 (2001)

    Article  MATH  Google Scholar 

  19. Wong, A., Bishop, W.: Efficient deblocking of block-transform compressed images and video using shifted thresholding. In: Proceedings of the IASTED International Conference on Signal and Image Processing (2006)

  20. Samadani, R., Sundararajan, A., Said, A.: Deringing and deblocking dct compression artifacts with efficient shifted transforms. In: International Conference on Image Processing, 2004 (ICIP’04), vol. 3, pp. 1799–1802. IEEE (2004)

  21. Nosratinia, A.: Postprocessing of JPEG-2000 images to remove compression artifacts. Signal Process. Lett. IEEE 10(10), 296–299 (2003)

    Article  Google Scholar 

  22. Kundu, A.: Enhancement of JPEG coded images by adaptive spatial filtering. In: Proceedings of the International Conference on Image Processing, 1995, vol. 1, pp. 187–190. IEEE (1995)

  23. Ramamurthi, B., Gersho, A.: Nonlinear space-variant postprocessing of block coded images. Acoust. Speech Signal Process. IEEE Trans. 34(5), 1258–1268 (1986)

    Article  Google Scholar 

  24. Forouzanfar, M., Abrishami, M.H., Masoumeh, G.: A new multiscale Bayesian algorithm for speckle reduction in medical ultrasound images. Signal Image Video Process. 4(3), 359–375 (2010)

    Article  MATH  Google Scholar 

  25. I. National Remote Sensing Centre, Sample images of RISAT-1. http://www.nrsc.gov.in/

  26. Deng, Y., Manjunath, B.: Unsupervised segmentation of color-texture regions in images and video. Pattern Anal. Mach. Intell. IEEE Trans. 23(8), 800–810 (2001)

    Article  Google Scholar 

  27. Laine, A., Fan, J., Yang, W.: Wavelets for contrast enhancement of digital mammography. Eng. Med. Biol. Mag. IEEE 14(5), 536–550 (1995)

    Article  Google Scholar 

  28. Shi, F., Selesnick, I.W., Cai, S.: Image sharpening via image denoising in the complex wavelet domain. In: Optical Science and Technology, SPIE’s 48th Annual Meeting, International Society for Optics and Photonics, pp. 467–474 (2003)

  29. Mihcak, M.K., Kozintsev, I., Ramchandran, K., Moulin, P.: Low-complexity image denoising based on statistical modeling of wavelet coefficients. Signal Process. Lett. IEEE 6(12), 300–303 (1999)

    Article  Google Scholar 

  30. Choi, H., Kim, T.: Blocking-artifact reduction in block-coded images using wavelet-based subband decomposition. Circuits Syst. Video Technol. IEEE Trans. 10(5), 801–805 (2000)

    Article  Google Scholar 

  31. Upadhyay, A.: Adaptive enhancement of compressed SAR images. M.S. thesis, IIT Kharagpur (2015)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sudipta Mahapatra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Upadhyay, A., Mahapatra, S. Adaptive enhancement of compressed SAR images. SIViP 10, 1335–1342 (2016). https://doi.org/10.1007/s11760-016-0929-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-0929-y

Keywords

Navigation