Skip to main content
Log in

A new method for fingerprint matching using phase-only auto- and cross-bispectrum

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Fingerprints are widely used in biometric techniques for automatic personal identification. In this work, we present a new correlation-based approach which uses the phase-only auto- and cross-bispectrum. This paper deals with the problem of aligning two fingerprints images under translation and rotation. The method described utilizes the shift invariance property of the auto-bispectrum to eliminate the effect of the translation component. Only the phase information is preserved from the auto-bispectrum in order to achieve better resilience against non-uniform illumination changes. The input fingerprint image that gives the highest correlation peak is selected as the rotation-normalized image. The theoretical basis for fingerprint matching by auto- and cross-bispectrum analysis is presented. To prove the feasibility of the proposed method, we compared it to a the method proposed by Ito et al. (IEICE Trans Fundam E87-A(3):682–691, 2004) implemented in a similar manner as our approach. The experiments executed on FVC 2004 have shown that the suggested algorithm is successful on the bad or poor quality fingerprint images. The algorithm is robust providing accurate results in most of the time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Maltoni, D., Maio, D., Jain, A.K., Prabhakar, S.: Handbook of Fingerprint Recognition. Springer, Berlin (2003)

    MATH  Google Scholar 

  2. Takita, K., Aoki, T., Sasaki, Y., Higuchi, T., Kobayashi, K.: High-accuracy subpixel image registration based on phase-only correlation. IEICE Trans. Fundam. E86–A(8), 1925–1934 (2003)

    Google Scholar 

  3. Foroosh, H., Zerubia, J.B., Berthod, M.: Extension of phase correlation to subpixel registration. IEEE Trans. Image Process. 11(3), 188–200 (2002)

    Article  Google Scholar 

  4. Chen, Q.S., Defrise, M., Deconinck, F.: Symmetric phase-only matched filtering of Fourier–Mellin transforms for image registration and recognition. IEEE Trans. Pattern Anal. Mach. Intell. 16(12), 1156–1168 (1994)

    Article  Google Scholar 

  5. Ito, K., Nakajima, H., Kobayashi, K., Aoki, T., Higuchi, T.: A fingerprint matching algorithm using phase-only correlation. IEICE Trans. Fundam. E87–A(3), 682–691 (2004)

    Google Scholar 

  6. Miyazawa, K., Ito, K., Aoki, T., Kobayashi, K., Nakajima, H.: An effective approach for iris recognition using phase-based image matching. IEEE Trans. Pattern Anal. Mach. Intell. 30(10), 1741–1756 (2008)

    Article  Google Scholar 

  7. Zhang, L., Zhang, L., Zhang, D.: Finger-knuckle-print verification based on band-limited phase-only correlation. In: Proceedings of the 13th International Conference on Computer Analysis of Images and Patterns, pp. 141–148. (2009)

  8. Reddy, B.S., Chatterji, B.N.: An FFT-based technique for translation, rotation, and scale-invariant image registration. IEEE Trans. Image Process. 5(8), 1266–1271 (1996)

    Article  Google Scholar 

  9. Ismaili Alaoui, E.M., Ibn-Elhaj, E., Bouyakhf, E.H.: A robust sub-pixel motion estimation algorithm using HOS in the parametric domain. EURASIP J. Image Video Process. (2009). doi:10.1155/2009/381673

  10. Ismaili Alaoui, E.M., Ibn-Elhaj, E., Bouyakhf, E.H.: Noise-insensitive image optimal flow estimation using higher-order statistics. J. Opt. Soc. Am. A (2009). doi:10.1364/JOSA.26.001212

    MATH  Google Scholar 

  11. Ismaili Alaoui, E.M., Ibn-Elhaj, E.: Estimation of sub-pixel motion using bispectrum. Res. Lett. Signal Process. (2008). doi:10.1155/2008/417915

  12. Ismaili Alaoui, E.M., Ibn-Elhaj, E.: A robust hierarchical motion estimation algorithm in noisy image sequences in the bispectrum domain. Signal Image Video Process. (SIViP) (2008). doi:10.1007/s11760-008-0081-4

    MATH  Google Scholar 

  13. Sadler, B., Giannakis, G.B.: Shift and rotation invariant object reconstruction using the bispectrum. J. Opt. Soc. Am. A 9, 57–69 (1992)

    Article  Google Scholar 

  14. Astola, J.T., Egiazarian, K.O., Kurbatov, I.V., Totsky, A.V.: Object recognition by bispectrum based image reconstruction in additive noise and line jitter environment. In: Proceedings of a Workshop on Computational Intelligence and Information Technologies, Nis, Yugoslavia, vol. 13, pp. 131–134. (2003)

  15. Zhang, X.-D., Shi, Y., Bao, Z.: A new feature vector using selected bispectra for signal classification with application in radar target recognition. IEEE Trans. Signal Process. 49(9), 1875–1885 (2001)

  16. Hurtós, N., Cuf, X., Petillot, Y., Salvi, J.: Fourier-based registrations for two-dimensional forward-looking sonar image mosaicing. In: 4 IEEE/RSJ International Conference on Intelligent Robots and Systems, October 7–12, 2012. Vilamoura, Algarve, Portugal (2012)

  17. Heikkila, J.: Image scale and rotation from the phase-only bispectrum. In: Proceedings of IEEE International Conference on Image Processing ICIP04, Singapore, pp. 1783–1786. Oct. (2004)

  18. Dianat, S.A., Rao, R.M.: Fast algorithms for phase and magnitude reconstruction from bispectra. Opt. Eng. 29(5), 504–512 (1990)

    Article  Google Scholar 

  19. Petropulu, A.P., Pozidis, H.: Phase reconstruction from bispectrum slices. IEEE Trans. Signal Process. 46(2), 527–530 (1998)

    Article  Google Scholar 

  20. Alshebeili, S., Cetin, A.E.: A phase reconstruction algorithm from bispectrum (seismic reflection data). IEEE Trans. Geosci. Remote Sens. 28(2), 166–170 (1990). doi:10.1109/36.46695

    Article  Google Scholar 

  21. Xianda, Z.: Modern Signal Processing, 2nd edn. Tsinghua University Press, Springer, Beijing (2002)

    Google Scholar 

  22. Maio, D., Maltoni, D., Capelli, R., Wayman, J., Jain, A.: FVC 2000: fingerprint verification competition. IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 402–412 (2002)

    Article  Google Scholar 

  23. Maio, D., Maltoni, D., Capelli, R., Wayman, J., Jain, A.: FVC 2002: second fingerprint verification competition. In: 16th International Conference on Pattern Recognition, vol. 3, pp. 811–814. (2002)

  24. Maio, D., Maltoni, D., Capelli, R., Wayman, J., Jain, A.: FVC 2004: Third Fingerprint Verification Competition. Lecture Notes in Computer Science, vol. 3072, pp. 1–7. (2004)

  25. Cappelli, R., Ferrara, M., Franco, A., Maltoni, D.: Fingerprint verification competition 2006. Biom. Technol. Today 15(7–8), 79 (2007)

    Google Scholar 

  26. Cappelli, R., Maio, D., Maltoni, D., Wayman, J., Jain, A.K.: Performance evaluation of fingerprint verification systems. IEEE Trans. Pattern Anal. Mach. Intell. 28(1), 318 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Ismaili Alaoui.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ismaili Alaoui, E.M., Ibn-Elhaj, E. A new method for fingerprint matching using phase-only auto- and cross-bispectrum. SIViP 10, 1327–1333 (2016). https://doi.org/10.1007/s11760-016-0930-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-0930-5

Keywords