Skip to main content
Log in

Salient object detection via images frequency domain analyzing

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

Salient object detection has become an important direction in image processing and computer vision. The traditional center-priori theory believes that salient target should be closer to the central area of the image. However, false detection will often occur when the salient object is closer to the image boundary. So, this paper obtains center coordinates of the salient object by using Harris corner detection algorithm and convex hull. Accordingly, an improved center-priori saliency detection model is obtained by applying the frequency-tuned method. And then, the local saliency is set up by wavelet transforming which has the local characteristic information representation ability in the time domain and frequency domain. In addition, we obtain the global saliency by spectral residual analyzing. Finally, an advanced center-priori saliency model is established. The experimental results show that the model in this paper has better detection effects and higher target detection rates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Shanableh, T.: Saliency detection in MPEG and HEVC video using intra-frame and inter-frame distances. Signal Image Video Process. 10(4), 703–709 (2016)

    Article  Google Scholar 

  2. Zhang, S.P., Yao, H.X., Liu, S.H.: Dynamic background subtraction based on local dependency histogram. IJPRAI 23(7), 1397–1419 (2009)

    Google Scholar 

  3. Zhang, S.P., Kasiviswanathan, S., Yuen, P.C., Harandi, M.: Online dictionary learning on symmetric positive definite manifolds with vision applications. AAAI. 3165–3173 (2015)

  4. Zhang, S.P., Zhou, H.Y., Yao, H.X., Zhang, Y.H., Wang, K.Q., Zhang, J.: Adaptive normalhedge for robust visual tracking. Signal Process. 110, 132–142 (2015)

    Article  Google Scholar 

  5. Zhang, S.P., Zhou, H.Y., Jiang, F., Li, X.L.: Robust visual tracking using structurally random projection and weighted least squares. IEEE Trans. Circuits Syst. Video Technol. 25(11), 1749–1760 (2015)

    Article  Google Scholar 

  6. Zhang, S.P., Yao, H.X., Sun, X., Lu, X.S.: Sparse coding based visual tracking: review and experimental comparison. Pattern Recogn. 46(7), 1772–1788 (2013)

    Article  Google Scholar 

  7. Jiang, F., Zhang, S.P., Wu, S., Gao, Y., Zhao, D.B.: Multi-layered gesture recognition with kinect. J. Mach. Learn. Res. 16, 227–254 (2015)

    MathSciNet  Google Scholar 

  8. Zhang, S.P., Yao, H.X., Sun, X., Wang, K.Q., Zhang, J., Lu, X.S., Zhang, Y.H.: Action recognition based on overcomplete independent components analysis. Inf. Sci. 281, 635–647 (2014)

    Article  Google Scholar 

  9. Itti, L.: Models of Bottom-Up and Top-Down Visual Attention. California Institute of Technology, Pasadena (2000)

    Google Scholar 

  10. Liu, Z.G., Yang, Y., Ji, X.H.: Flame detection algorithm based on a saliency detection technique and the uniform local binary pattern in the YCbCr color space. Signal Image Video Process. 10(2), 277–284 (2016)

    Article  Google Scholar 

  11. Hamel, S., Guyader, N., Pellerin, D., Houzet, D.: Contribution of color in saliency model for videos. Signal Image Video Process. 10(3), 423–429 (2016)

    Article  Google Scholar 

  12. Singh, N., Agrawal, R.K.: Combination of Kullback–Leibler divergence and Manhattan distance measures to detect salient objects. Signal Image Video Process. 9(2), 427–435 (2015)

    Article  Google Scholar 

  13. Itti, L., Koch, C., Niebur, E.: Model of saliency-based visual attention for rapid scene analysis. IEEE Trans. Pattern Anal. Mach. Intell. 20(11), 1254–1259 (1998)

    Article  Google Scholar 

  14. Harel, J., Koch, C., Perona, P.: Graph-based visual saliency. Adv Neural Inf. Process. Syst. 19, 545–552 (2007)

    Google Scholar 

  15. Yang, C., Zhang, L.: Saliency detection via graph-based manifold ranking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 3166–3173. (2013)

  16. Hou, X.D., Zhang, L.: Saliency detection: A spectral residual approach. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. (2007)

  17. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-tuned salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1597–1604. (2009)

  18. Maybank, S.: A probabilistic definition of salient regions for image matching. Nuerocomputing 120, 4–14 (2013)

    Article  Google Scholar 

  19. Yang, J., Yang, M.: Top-down visual saliency via joint CRF and dictionary learning. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 2296–2303. (2012)

  20. Cui, J., Xie, J.: Corner detection on finger vein images using the improved Harris algorithm. Opt. Int. J. Light Electron Opt. 125(17), 4668–4671 (2014)

    Article  Google Scholar 

  21. Yang, C., Zhang, L.: Graph-regularized saliency detection with convex-hull-based center prior. Signal Process. Lett. 20(7), 637–640 (2013)

    Article  Google Scholar 

  22. Tu, X.B.: Image Significant Algorithm and Evaluation Research. Nanjing Aeronautics and Astronautics University, Nanjing (2011)

    Google Scholar 

  23. Neverz, I., Lin, W., Fang, Y.: A saliency detection model using low-level features based on wavelet transform. IEEE Trans. Multimed. 15(1), 96–105 (2012)

    Google Scholar 

  24. Biswas, A.: VidTIMIT audio visual phoneme recognition using AAM visual features and human auditory motivated acoustic wavelet features. In: IEEE Conference on Recent Trends in Information Systems, pp. 428–433. (2015)

  25. Su, X.: Study on optimal wavelet decomposition level in infrared and visual light image fusion. In: IEEE Conference on Measuring Technology and Mechatronics Automation, pp. 616–619. (2010)

  26. Ge, Y.: Application research on wavelet analysis in denoising of visual measurement edge detection. In: International Symposium on Computational Intelligence and Design, pp. 343–346. (2011)

  27. Velasco, R., Luis, E.: Visual servoing using discrete wavelet transform. In: World Automation Congress. pp. 1–6. (2012)

  28. Yang, C.: Salient Object Detection Based on Prior Integration and Manifold Ranking. Dalian university of technology, Dalian (2013)

    Google Scholar 

  29. Siraj, S., Sudheer, S.: Performance and analysis of high capacity steganography of color images involving wavelet transform. Opt. Int. J. Light Electron Opt. 126(23), 3755–3760 (2015)

    Article  Google Scholar 

  30. Zhang, J., Wang, M., Zhang, S.P., Li, X.L., Wu, X.D.: Spatiochromatic context modeling for color saliency analysis. IEEE Trans. Neural Netw. Learn. Syst. 27(6), 1177–1189 (2016)

    Article  Google Scholar 

  31. Simpson, W., Mcfadden, S.: Spatial frequency channels derived from individual differences. Vis. Res. 45(21), 2723–2727 (2005)

    Article  Google Scholar 

  32. Cheng, M., Zhang, G.: Global contrast based salient region detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 409–416. (2011)

  33. Goferman, S., L. Manor, Z., Tal, A.: Context-aware saliency detection. In: IEEE conference on Computer Vision and Pattern Recognition, pp. 2376–2383. (2010)

  34. Borj, A., Cheng, M.M., Jiang, H.: Salient object detection: a survey. arXiv preprint arXiv: 1441.5857 (2014)

  35. Yan, Q., Xu, L., Shi, J.P., Jia, J.: Hierarchical saliency detection. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1155–1162 (2013)

Download references

Acknowledgments

This work has been supported by National Natural Science Foundation of China (61203261), China Postdoctoral Science Foundation Funded Project (2012M521335), Ministry of Education Key Laboratory of Intelligent Computing and Signal Processing (201201), open funding programme of Joint Laboratory of Flight Vehicle Ocean-based Measurement and Control (FOM2014OF004), Jiangsu Key Laboratory of Image and Video Understanding for Social Safety (Nanjing University of Science and Technology, Grant No. 30920140122007) and The Fundamental Research Funds of Shandong University (2014JC017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenxue Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, C., Chen, Z. & Liu, C. Salient object detection via images frequency domain analyzing. SIViP 10, 1295–1302 (2016). https://doi.org/10.1007/s11760-016-0954-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-0954-x

Keywords

Navigation