Skip to main content
Log in

Stokes parameters and DOAs estimation of partially polarized sources using a EM vector sensor

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper, the problem of polarization and direction-of-arrival (DOA) estimation using an electromagnetic (EM) vector sensor is addressed based on the augmented second-order statistics of quaternions. The augmented quaternion model of an EM vector sensor is introduced by employing the augmented second-order statistics of quaternions, which include the information in both the standard covariance and the pseudo-covariance. The fact is revealed that the Stokes parameters of an EM wave can be extracted from an augmented covariance matrix. An augmented quaternion-based approach is proposed for the Stokes parameters and DOA estimation of polarized EM waves. The proposed approach uses only information in three imaginary parts of both the standard covariance and the pseudo-covariance matrix. In theory, it is guaranteed to remove the effect of the additive noise which is uncorrelated between measurement channels. The proposed approach is applicable to both completely polarized and partially polarized EM waves. Simulations are used to verify the performance of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Hurtado, M., Xiao, J.-J., Nehorai, A.: Target estimation, detection and tracking. IEEE Signal Process. Mag. 26(1), 42–52 (2009)

    Article  Google Scholar 

  2. Carter, L.M., Campbell, D.B., Campbell, B.A.: Geologic studies of planetary surfaces using radar polarimetric imaging. Proc. IEEE 99(5), 770–782 (2011)

    Article  Google Scholar 

  3. Raney, R.K.: Dual-polarized SAR and stokes parameters. IEEE Geosci. Remote Sens. Lett. 3(3), 317–319 (2006)

    Article  Google Scholar 

  4. Yueh, S.H., Wilson, W.J., Dinardo, S.J., Hsiao, S.V.: Polarimetric microwave wind radiometer model function and retrieval testing for WindSat. IEEE Trans. Geosci. Remote Sens. 44(3), 584–596 (2006)

    Article  Google Scholar 

  5. Nehorai, A., Paldi, E.: Vector-sensor array processing for electromagnetic source localization. IEEE Trans. Signal Process. 42(2), 376–398 (1994)

    Article  Google Scholar 

  6. Wong, K.T., Zoltowski, M.D.: Uni-vector-sensor ESPRIT for multi-source azimuth, elevation, and polarization estimation. IEEE Trans. Antennas Propag. 45(10), 1467–1474 (1997)

    Article  Google Scholar 

  7. Wong, K.T., Zoltowski, M.D.: Self-initiating MUSIC direction finding and polarization estimation in spatio-polarizational beamspace. IEEE Trans. Antennas Propag. 48(8), 1235–1245 (2000)

    Article  Google Scholar 

  8. Rahamim, D., Tabrikian, J., Shavit, R.: Source localization using vector sensor array in multipath environment. IEEE Trans. Signal Process. 52(11), 3096–3103 (2004)

    Article  Google Scholar 

  9. Hurtado, M., Nehorai, A.: Performance analysis of passive low-grazing-angle source localization in maritime environments using vector sensors. IEEE Trans. Aerosp. Electron. Syst. 43(2), 780–789 (2007)

    Article  Google Scholar 

  10. Tao, J., Liu, L., Lin, Z.: Joint DOA, range, and polarization estimation in the Fresnel region. IEEE Trans. Aerosp. Electron. Syst. 47(4), 2657–2672 (2011)

  11. Wong, K.T., Yuan, X.: “Vector cross-product direction-finding” with an electromagnetic vector-sensor of six orthogonally oriented but spatially noncollocating dipoles/loops. IEEE Trans. Signal Process. 59(1), 160–171 (2011)

    Article  MathSciNet  Google Scholar 

  12. Yuan, X., Wong, K.T., Agrawal, K.: Polarization estimation with a dipole–dipole pair, a dipole–loop pair, or a loop–loop pair of various orientations. IEEE Trans. Antennas Propag. 60(5), 2442–2452 (2012)

    Article  MathSciNet  Google Scholar 

  13. Miron, S., Le Bihan, N., Mars, J.I.: Quaternion-MUSIC for vector-sensor array processing. IEEE Trans. Signal Process. 54(4), 1218–1229 (2006)

    Article  Google Scholar 

  14. Jiang, J.F., Zhang, J.Q.: Geomatric algebra of Euclidean 3-space for electromagnetic vector-sensor array processing, part I: modeling. IEEE Trans. Antennas Propag. 58(12), 3961–3973 (2010)

    Article  Google Scholar 

  15. Tao, J.-W., Chang, W.-X.: A novel combined beamformer based on hypercomplex processes. IEEE Trans. Aerosp. Electron. Syst. 49(2), 1276–1289 (2013)

    Article  Google Scholar 

  16. Tao, J.-W.: Performance analysis for interference and noise canceller based on hypercomplex and spatio-temporal-polarisation processes. IET Rarar Sonar Navig. 7(3), 277–286 (2013)

    Article  Google Scholar 

  17. Li, J., Stoica, P.: Efficient parameter estimation of partially polarized electromagnetic waves. IEEE Trans. Signal Process. 42(11), 3114–3125 (1994)

    Article  Google Scholar 

  18. Ho, K.-G., Tan, K.-C., Tan, B.T.G.: Effient Method for estimating directions-of-arrival of partially polarized signals with electromagnetic vector sensors. IEEE Trans. Signal Process. 45(10), 2485–2498 (1997)

    Article  Google Scholar 

  19. Ho, K.-G., Tan, K.-C., Tan, B.T.G.: Estimating directions of arrival of completely and incompletely polarized signals with electromagnetic vector sensors. IEEE Trans. Signal Process. 47(10), 2845–2852 (1999)

    Article  Google Scholar 

  20. Took, C.C., Mandic, D.P.: Augmented second-order statistics of quaternion random signals. Signal Process. 91(2), 214–224 (2011)

    Article  MATH  Google Scholar 

  21. Du, L., Stoica, P., Li, J., Cattafesta III, L.N.: Computationally efficient approaches to aeroacoustic source power estimation. IEEE Signal Process. Lett. 18(1), 11–14 (2011)

    Article  Google Scholar 

  22. Tan, M., Tsang, I.W., Wang, L.: Matching pursuit lasso part I: sparse recovery over big dictionary. IEEE Trans. Signal Process. 63(3), 727–741 (2015)

    Article  MathSciNet  Google Scholar 

  23. Goodman, J., Forsythe, K., Miller, B.: Efficient reconstruction of block-sparse signals. In: 2011 IEEE statistical processing workshop (SSP), pp. 629–632 (2011)

  24. Goodman, J., Forsythe, K., Miller, B.: Efficient reconstruction of block-sparse signals. In: 2011 IEEE Statistical Processing Workshop (SSP), pp. 629–632 (2011)

  25. Chen, J., Huo, X.: Theoretical results on sparse representations of multiple measurement vectors. IEEE Trans. Signal Process. 54(12), 4634–4643 (2006)

    Article  Google Scholar 

  26. Determe, J.-F., Louveaux, J., Jacques, L., Horlin, F.: On the exact recovery condition of simultaneous orthogonal matching pursuit. IEEE Signal Process. Lett. 23(1), 164–168 (2016)

    Article  Google Scholar 

  27. Duarte, M.F., Eldar, Y.C.: Structured compressed sensing: from theory to applications. IEEE Trans. Signal Process. 59(9), 4053–4085 (2011)

    Article  MathSciNet  Google Scholar 

  28. Stoica, P., Larsson, E.G., Gershman, A.B.: The stochastic CRB for array processing: a textbook derivation. IEEE Signal Process. Lett. 8(5), 148–150 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian-wu Tao.

Additional information

This work was supported by the National Natural Science Foundation of China under Grants 61571462.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, Jw., Fan, Qj. & Yu, F. Stokes parameters and DOAs estimation of partially polarized sources using a EM vector sensor. SIViP 11, 737–744 (2017). https://doi.org/10.1007/s11760-016-1017-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-1017-z

Keywords

Navigation