Skip to main content
Log in

Image despeckling and deblurring via regularized complex diffusion

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

In this paper an image restoration and enhancement model is being proposed, which is suitable for multiplicative data-dependent speckle noise (whose intensity is Gamma distributed) under linear shift-invariant blurring artifacts. The proposed strategy devises a nonlinear second-order diffusive-reactive model for enhancing and restoring images degraded by the aforementioned scenario. The reactive term is derived based on the Maximum a posteriori (MAP) estimator, to make it adaptive to the noise distribution in the input data. This noise-adaptive reactive term helps to restore and enhance the images under data-correlated noise setup. Unlike the other second-order nonlinear diffusion methods, the proposed solution preserves edges and details and reduces piecewise constant approximation in the homogeneous intensity regions in the course of its evolution. The experimental results demonstrated in this paper duly support the above claims.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Notes

  1. PSNR and PFOM are evaluated for other noise variance values as well and the result is observed to follow the similar pattern.

References

  1. Weickert, J.: A review of nonlinear diffusion filtering. Scale-Space 1252, 3–28 (1997)

  2. Aubertt, G., Aujol, J.F.: A variational approach to removing multiplicative noise. SIAM J. Appl. Math. 68(4), 925–946 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Yu, Y., Acton, S.T.: Speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 11(11), 1260–1270 (2002)

    Article  MathSciNet  Google Scholar 

  4. Rudin, L.I., Lions, P.L., Osher, S.: Multiplicative denoising and deblurring: theory and algorithms. In: Geometric Level Set Methods in Imaging, Vision, and Graphics, pp. 103–120. Springer, Berlin (2003)

  5. Setzer, S., Steidl, G., Teuber, T.: Deblurring Poissonian images by split Bregman techniques. J. Visual Commun. Image Represent. 21(3), 193–199 (2010)

    Article  Google Scholar 

  6. Rudin, L.I., Osher, S., Fehtami, E.: Nonlinear total variation based noise removal algorithms. Phys. D 68(1), 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12(7), 629–639 (1990)

    Article  Google Scholar 

  8. Sun, Q., Hossack, J.A., Tang, J., Acton, S.T.: Speckle reducing anisotropic diffusion for 3D ultrasound images. Comput. Med. Imaging Graph. 28(8), 461–470 (2004)

    Article  Google Scholar 

  9. Krissian, K., Westin, C.F., Kikinis, R., Vosburgh, K.G.: Oriented speckle reducing anisotropic diffusion. IEEE Trans. Image Process. 16(5), 1412–1424 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bini, A.A., Bhat, M.S.: Despeckling low SNR, low contrast ultrasound images via anisotropic level set diffusion. Multidimens. Syst. Signal Process. 25(1), 41–65 (2014)

    Article  MATH  Google Scholar 

  11. Lee, J.S.: Digital image enhancement and noise filtering by using local statistics. IEEE Trans. Pattern Anal. Mach. Intell. 2(2), 165–178 (1980)

    Article  Google Scholar 

  12. Kuan, D., Sawchuck, A., Strand, T., Chavel, P.: Adaptive noise smoothing filter for images with signal-dependent noise. IEEE Trans. Pattern Anal. Mach. Intell. 7(2), 165–177 (1985)

    Article  Google Scholar 

  13. Li, H., Huang, B., Huang, X.: A level set filter for speckle reduction in SAR images. EURASIP J. Adv. Signal Process. 20(1), 45–78 (2010)

    Google Scholar 

  14. Yu, J., Tan, J., Wang, Y.: Ultrasound speckle reduction by a Susan-controlled anisotropic diffusion method. Pattern Recogn. 43(9), 3083–3092 (2010)

    Article  Google Scholar 

  15. Gilboa, G., Sochen, N.A., Zeevi, Y.V.: Image enhancement and denoising by complex diffusion processes. IEEE Trans. Pattern Anal. Mach. Intell. 26, 1020–1036 (2004)

    Article  Google Scholar 

  16. Bernardes, R., Maduro, C., Serranho, P., Araujo, A., Barbeiro, S., Cunha-Vaz, J.: Improved adaptive complex diffusion despeckling filter. Opt. Express 18(23), 48–59 (2010)

    Article  Google Scholar 

  17. Jidesh, P., Bini, A.A.: A complex diffusion driven approach for removing data-dependent multiplicative noise. LNCS 8251, 284–289 (2013)

    Google Scholar 

  18. Jidesh, P., Bini, A.A.: Image enhancement under data-dependent multiplicative gamma noise. Appl. Comput. Intell. Soft Comput. 2014, 1–8 (2014)

  19. Jin, Zhengmeng, Yang, Xiaoping: A variational model to remove the multiplicative noise in ultrasound images. J. Math. Imaging Vis. 39(1), 62–74 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Nasser, A., Farideh, A., Ladan, S.C.: A restoration-segmentation algorithm based on flexible Arnoldi–Tikhonov method and Curvelet denoising. SIViP 10(5), 935–942 (2016)

    Article  Google Scholar 

  21. Yeganli, F., Nazzal, M., Unal, M., Ozkaramanli, H.: Image super-resolution via sparse representation over multiple learned dictionaries based on edge sharpness Signal. Image Video Process. 10(3), 535–542 (2016)

    Article  Google Scholar 

  22. Dabov, K., Foi, A., Katkovnik, V., Egiazarian, K.: Image denoising by sparse 3D transform-domain collaborative filtering. IEEE Trans. Image Process. 16(8), 2080–2095 (2007)

    Article  MathSciNet  Google Scholar 

  23. Danielyan, A., Katkovnik, V., Egiazarian, K.: BM3D frames and variational image deblurring. IEEE Trans. Image Process. 21(4), 1715–1728 (2012)

    Article  MathSciNet  Google Scholar 

  24. Dong, W., Zhang, L., Shi, G., Wu, X.: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization. IEEE Trans. Image Process. 20(7), 1838–1857 (2011)

    Article  MathSciNet  Google Scholar 

  25. Shahdoosti, H.R., Khayat, O.: Image denoising using sparse representation classification and non-subsampled shearlet transform. Signal Image Video Process. 10(6), 1081–1087 (2016)

  26. Wei, D., Li, Y.-M.: Generalized sampling expansions with multiple sampling rates for lowpass and bandpass signals in the fractional fourier transform domain. IEEE Trans. Signal Process. 64(18), 4861–4874 (2016)

    Article  MathSciNet  Google Scholar 

  27. Wei, D.: Image super-resolution reconstruction using the high-order derivative interpolation associated with fractional filter functions. IET Signal Process. (2016). doi:10.1049/iet-spr.2015.0444

  28. Anwar, Jesna, Abdulla, P.: Single-image super-resolution using Kernel recursive least squares. Signal Image Video Process. 10(8), 1551–1558 (2016)

    Article  Google Scholar 

  29. Wang, W., Ng, M.K.: Convex regularized inverse filtering methods for blind image deconvolution. Signal Image Video Process 10(7), 1353–1360 (2016)

  30. Awate, Suyash P., Whitaker, Ross T.: Feature-preserving MRI denoising: a nonparametric empirical Bayes approach. IEEE Trans. Med. Imaging 26(9), 1242–1255 (2007)

    Article  Google Scholar 

  31. Milanfar, Peyman: A ’tour of modern image filtering: new insights and methods, both practical and theoretical’. IEEE Signal Process. Mag. 30(1), 106–128 (2013)

    Article  MathSciNet  Google Scholar 

  32. Huang, L., Xiao, L., Wei, Z.-H.: Multiplicative noise removal via a novel variational model. EURASIP J. Image Video Process. 2(1), 1–16 (2010)

    Article  Google Scholar 

  33. Huang, M., Ng, M.K., Wen, Y.: A new total variation method for multiplicative noise removal. SIAM J. Imaging Sci. 2(1), 22–40 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  34. Jidesh, P.: A convex regularization model for image restoration. Comput. Electr. Eng. 40(8), 66–78 (2014)

    Article  Google Scholar 

  35. Pratt, W.K.: Digital Image Processing. Wiley Publisher, New York (2007)

    Book  MATH  Google Scholar 

  36. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Tran. Image Process. 13(1), 1–14 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. Jidesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jidesh, P., Bini, A.A. Image despeckling and deblurring via regularized complex diffusion. SIViP 11, 977–984 (2017). https://doi.org/10.1007/s11760-016-1047-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-016-1047-6

Keywords

Mathematics Subject Classification

Navigation