Skip to main content
Log in

Texture-preserving deconvolution via image decomposition

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

The image with rich textures can be decomposed into the sum of a geometric part and a textural part. Inspired by this fact, we propose an efficient texture-preserving image deconvolution algorithm based on image decomposition. Our algorithm restores the geometric part and textural part, respectively, by incorporating \(L_0\) gradient minimization and a wave atoms-based Wiener shrinkage filter. The \(L_0\)-based gradient minimization method could globally locate important edges, main structures. The wave atoms transform offers a better representation of images containing oscillatory patterns and textures than other known transforms. Our method contains three steps for restoring texture images. First, we propose an image deconvolution method based on \(L_0\) gradient minimization to restore geometric part of the image with minimal loss of image detail components. Next, we use a Wiener shrinkage filter in the wave atom domain to attenuate the leaked colored noise and extract fine details. Finally, we obtain the estimated image by adding the two image parts together. We compare our deconvolution algorithm with other competitive deconvolution techniques in terms of ISNR, SSIM, and visual quality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wilf, P., Zhang, S., Chikkerur, S., et al.: Computer vision cracks the leaf code. Proc. Natl. Acad. Sci. USA. 113(12), 3305–3310 (2016)

    Article  Google Scholar 

  2. Zhang, S., Lan, X., Qi, Y., et al.: Robust visual tracking via basis matching. IEEE Trans. Circuits Syst. Video Technol. (2016). doi: 10.1109/TCSVT.2016.2539860

  3. Zhang, S., Lan, X., Yao, H., et al.: A biologically inspired appearance model for robust visual tracking. IEEE Trans. Neural Netw. Learn. Syst. 1–14 (2016). doi:10.1109/TNNLS.2016.2586194

  4. Zhang, S., Zhou, H., Jiang, F., et al.: Robust visual tracking using structurally random projection and weighted least squares. IEEE Trans. Circuits Syst. Video Technol. 25(11), 1–1 (2015)

    Article  Google Scholar 

  5. Jiang, F., Zhang, S., Wi, S., et al.: Multi-layered gesture recognition with kinect. J. Mach. Learn. Res. 16(Feb), 227–254 (2015)

    MathSciNet  MATH  Google Scholar 

  6. Zhang, S., Yao, H., Sun, X., et al.: Action recognition based on overcomplete independent components analysis. Inf. Sci. 281, 635–647 (2014)

    Article  Google Scholar 

  7. Tikhonov, A.N., Arsenin, V.Y.: Solution of Ill-posed problems. Math. Comput. 32(144), 491–491 (1978)

    Google Scholar 

  8. Aghazadeh, N., Akbarifard, F., Cigaroudy, L.S.: A restoration–segmentation algorithm based on flexible Arnoldi–Tikhonov method and Curvelet denoising. Signal Image Video Process. 10(5), 935–942 (2016)

    Article  Google Scholar 

  9. Banham, M.R., Katsaggelos, A.K.: Digital image restoration. IEEE Signal Process. Mag. 14(2), 24–41 (1997)

    Article  Google Scholar 

  10. Yang, J., Yin, W., Zhang, Y., et al.: A fast algorithm for edge-preserving variational multichannel image restoration. SIAM J. Imaging Sci. 2(2), 569–592 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  11. Purkait, P., Chanda, B.: Morphologic gain-controlled regularization for edge-preserving super-resolution image reconstruction. Signal Image Video Process. 7(5), 925–938 (2013)

  12. Neelamani, R., Choi, H., Baraniuk, R.: ForWaRD–Fourier-wavelet regularized deconvolution for Ill-conditioned systems. IEEE Trans. Signal Process. 52(2), 418–433 (2004)

    Article  MathSciNet  Google Scholar 

  13. Hansen, P.Ch.: Rank-deficient and discrete ill-posed problems. SIAM J. Numer. Anal. 35(3), 19–44 (1997)

  14. Dong, B., Shen, Z.: MRA based wavelet frames and applications. IAS Lecture Notes Serier, Summer Program on “The Mathematics of Image Processing”, Park City Mathematics Institute (2010)

  15. Oliveira, J.P., Bioucas-Dias, J.M., Figueiredo, M.A.T.: Adaptive total variation image deblurring: a majorization–minimization approach. Signal Process. 89(9), 1683–1693 (2009)

    Article  MATH  Google Scholar 

  16. Li, Xu., Cewu, Lu., Yi, Xu., Jiaya, Jia.: Image smoothing via \(L_0\) gradient minimizatior. ACM Trans. Graph. 30(6), 174 (2011)

  17. Alvarez, L., Gousseau, Y., Morel, J.M.: Scales in natural images and a consequence on their bounded variation norm. Lect. Notes Comput. Sci. 1682(7), 247–258 (1999)

    Article  Google Scholar 

  18. Patel, V.M., Easley, G.R., Healy, D.M.: Shearlet-based deconvolution. IEEE Trans. Image Process. 18(12), 2673–2685 (2009)

    Article  MathSciNet  Google Scholar 

  19. Wei, Y., Liu, S.: Domain-based structure-aware image inpainting. Signal Image Video Process. 10(5), 911–919 (2016)

    Article  Google Scholar 

  20. Rzeszutek, R., Androutsos, D.: Propagating sparse labels through edge-aware filters. Signal Image Video Process. 9(1), 17–24 (2015)

    Article  Google Scholar 

  21. Hagag, A., El-Samie, F.A., Amin, M.: Multispectral image compression with band ordering and wavelet transforms. Signal Image Video Process. 9(7), 769–778 (2015)

    Article  Google Scholar 

  22. Portilla, J.: Image restoration through \(L_0\) analysis-based sparse optimization in tight frames. In: IEEE International Conference on Image Processing, pp. 3909–3912 (2009)

  23. Demanet, L., Ying, L.: Wave atoms and sparsity of oscillatory patterns. Appl. Comput. Harmonic Anal. 23(3), 368–387 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  24. Yang, H., Zhang, Z.: Fusion of wave atom-based Wiener shrinkage filter and joint non-local means filter for texture-preserving image deconvolution. Opt. Eng. 51(6), 351–353 (2012)

    Article  Google Scholar 

  25. Combettes, P.L., Pesquet, J.C.: A proximal decomposition method for solving convex variational inverse problems. Inverse Probl. 24(6), 65014–65040 (2009)

    Article  MathSciNet  Google Scholar 

  26. Yang, H., Zhang, Z., Zhu, M., et al.: Edge-preserving image deconvolution with nonlocal domain transform. Opt. Laser Technol. 54(26), 128–136 (2013)

    Article  Google Scholar 

  27. Yang, H., Zhu, MZhongbo Zhang Z., Huang, H.: Guided Filter based edge-preserving image non-blind deconvolution. In: The 20th IEEE International Conference on Image Processing ICIP 2013, Sep (2013)

  28. Huang, H., Yang, H., Ma, S.: Gradient-based image deconvolution. J. Electron. Imaging 22(1), 4049–4068 (2013)

    Article  Google Scholar 

  29. Yang, H., Hu, G., Wang, Y., Wu, X.: Low-rank approach for image nonblind deconvolution with variance estimation. J. Electron. Imaging. 24(6), 063013–063013 (2015)

  30. Demanet, L., Ying, L.: Curvelets and wave atoms for mirror-extended images. Proc. SPIE 6701. Wavelets XII, 67010J (2007)

  31. Villemoes, L.F.: Wavelet packets with uniform time-frequency localization. Comptes Rendus Math. 335(10), 793–796 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Cands, E., Demanet, L., Donoho, D., et al.: Fast discrete curvelet transforms. Multiscale Modeling Simul. 5(3), 861–899 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heyan Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, H., Wang, K. Texture-preserving deconvolution via image decomposition. SIViP 11, 1189–1196 (2017). https://doi.org/10.1007/s11760-017-1074-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1074-y

Keywords

Navigation