Abstract
This paper concerns the low-rank minimization problems which consist of finding a matrix of minimum rank subject to linear constraints. Many existing approaches, which used the nuclear norm as a convex surrogate of the rank function, usually result in a suboptimal solution. To seek a tighter rank approximation, we develop a non-convex surrogate to approximate the rank function based on the Laplace function. An iterative algorithm based on the augmented Lagrangian multipliers method is developed. Empirical studies for practical applications including robust principal component analysis and low-rank representation demonstrate that our proposed algorithm outperforms many other state-of-the-art convex and non-convex methods developed recently in the literature.


Similar content being viewed by others
Notes
The contribution of zero singular values in Laplace norm is the same as the true rank function and the nuclear norm.
References
Candès, E.J., Li, X., Ma, Y., et al.: Robust principal component analysis? J. ACM 58(3), 11 (2011)
Wright, J., Ganesh, A., Rao, S., et al.: Robust principal component analysis: exact recovery of corrupted low-rank matrices via convex optimization. In: 23rd Annual Conference on Advances in Neural Information Processing Systems 22, Vancouver, 7–10 Dec 2009 (2009)
De la Torre, F., Black, M.J.: Robust principal component analysis for computer vision. ICCV 1, 362–369 (2001)
Xu, H., Caramanis, C., Sanghavi, S.: Robust PCA via outlier pursuit. In: Proceedings of the 23rd International Conference on Neural Information Processing Systems, NIPS’10, pp. 2496–2504, Curran Associates Inc, Vancouver, 6–9 Dec 2010 (2010)
Liu, G., Lin, Z., Yan, S., et al.: Robust recovery of subspace structures by low-rank representation. IEEE Trans. Pattern Anal. Mach. Intell. 35(1), 171–184 (2013)
Zhang, Z., Liang, X., Ganesh, A., et al.: TILT: transform invariant low-rank textures. Int. J. Comput. Vis. 99(1), 1–24 (2010)
Chen, C., He, B., Yuan, X.: Matrix completion via an alternating direction method. IMA J. Numer. Anal. 32(1), 227–245 (2012)
Candès, E.J., Recht, B.: Exact matrix completion via convex optimization. Found. Comput. Math. 9(6), 717–772 (2009)
Vidal, R., Favaro, P.: Low rank subspace clustering (LRSC). Pattern Recognit. Lett. 43, 47–61 (2014)
Zhou, X., Yang, C., Zhao, H., et al.: Low rank modeling and its applications in image analysis. ACM Comput. Surv. 47(2), 36 (2015)
Xu, Y., Yin, W., Wen, Z., et al.: An alternating direction algorithm for matrix completion with nonnegative factors. Front. Math. China 7(2), 365–384 (2012)
Otazo, R., Candès, E.J., Sodickson, K.: Low-rank plus sparse matrix decomposition for accelerated dynamic MRI with separation of background and dynamic components. Magn. Reson. Med. 73(3), 1125–1136 (2015)
Mardani, M., Mateos, G., Giannakis, G.: Recovery of low-rank plus compressed sparse matrices with application to unveiling traffic anomalies. IEEE Trans. Inf. Theory 59(8), 5186–5205 (2013)
Sun, Q., Xiang, S., Ye, J.: Robust principal component analysis via capped norms. In: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 311–319 (2013)
Hu, Y., Zhang, D., Ye, J., et al.: Fast and accurate matrix completion via truncated nuclear norm regularization. IEEE Trans. Pattern Anal. Mach. Intell. 35(9), 2117–2130 (2013)
Marjanovic, G., Solo, V.: On optimization and matrix completion. IEEE Trans. Signal Process. 60(11), 5714–5724 (2012)
Peng, C., Kang, Z., Li, H., et al.: Subspace clustering using log-determinant rank approximation. In: Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 925–934 (2015)
Wang, Y., Liu, P., Li, Z., et al.: Data regularization using Gaussian beams decomposition and sparse norms. J. Inverse Ill Posed Probl. 21(1), 1–23 (2013)
Tao, P., An, L.: Convex analysis approach to dc programming: theory, algorithms and applications. Acta Math. Vietnam. 22(1), 289–355 (1997)
Bertsekas, D.P.: Constrained Optimization and Lagrange Multiplier Methods. Academic press, Cambridge (1982)
Boyd, S., Parikh, N., Chu, E., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends Mach. Learn. 3(1), 1–122 (2011)
Lin, Z., Chen, M., Ma, Y.: The augmented lagrange multiplier method for exact recovery of corrupted low-rank matrices. arXiv preprint arXiv:1009.5055 (2010)
Bazaraa, M., Sherali, H., Shetty, C.: Nonlinear Programming: Theory and Algorithms. Wiley, Hoboken (1993)
Huang, J., Nie, F., Huang, H., et al.: Robust manifold nonnegative matrix factorization. ACM Trans. Knowl. Discov. Data (TKDD) 8(3), 11 (2014)
Yuan, M., Lin, Y.: Model selection and estimation in regression with grouped variables. J. R. Stat. Soc. Ser. B 68(1), 49–67 (2006)
Cai, J.F., Candès, E.J., Shen, Z.: A singular value thresholding algorithm for matrix completion. SIAM J. Optim. 20(4), 1956–1982 (2010)
Tao, M., Yuan, X.: Recovering low-rank and sparse components of matrices from incomplete and noisy observation. SIAM J. Optim. 21(1), 57–81 (2011)
Zhou, T., Tao, D.: Godec: Randomized low-rank and sparse matrix decomposition in noisy case. In: 28th International Conference on Machine Learning (ICML), pp. 33–40, Bellevue, 28 June–2 July 2011 (2011)
Netrapalli, P., Niranjan, U.N., Sanghavi, S., et al.: Non-convex robust PCA. In: Ghahraman, Z., Welling, M., Cortes, C., Lawrence, N.D., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 27, pp. 1107–1115. Curran Associates, Inc. (2014)
Elhamifar, E., Vidal, R.: Sparse subspace clustering: algorithm, theory, and applications. IEEE Trans. Pattern Anal. Mach. Intell. 35(11), 2765–2781 (2013)
Yan, J., Pollefeys, M.: A General Framework for Motion Segmentation: Independent, Articulated, Rigid, Non-rigid, Degenerate and Non-degenerate. ECCV 2006. Springer, Berlin (2006)
Chen, G., Lerman, G.: Spectral curvature clustering (SCC). Int. J. Comput. Vis. 81(3), 317–330 (2009)
Li, L., Huang, W., Gu, I., et al.: Statistical modeling of complex backgrounds for foreground object detection. IEEE Trans. Image Process. 13(11), 1459–1472 (2004)
Goldfarb, D., Ma, S., Scheinberg, K.: Fast alternating linearization methods for minimizing the sum of two convex functions. Math. Program. 141(1–2), 349–382 (2013)
Peng, Y., Ganesh, A., Wright, J., et al.: RASL: robust alignment by sparse and low-rank decomposition for linearly correlated images. IEEE Trans. Pattern Anal. Mach. Intell. 34(11), 2233–2246 (2012)
Lee, K.C., Ho, J., Kriegman, D.J.: Acquiring linear subspaces for face recognition under variable lighting. IEEE Trans. Pattern Anal. Mach. Intell. 27(5), 684–698 (2005)
Agarwal, P.K., Mustafa, N.H.: k-Means projective clustering. In: Proceedings of the Twenty-Third ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 155–165 (2004)
Acknowledgements
This work was supported by National Natural Science Foundation of China (Grant No. 11241005) and Research Project Supported by Shanxi Scholarship Council of China (2015-093).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Chen, Y., Wang, Y., Li, M. et al. Augmented Lagrangian alternating direction method for low-rank minimization via non-convex approximation. SIViP 11, 1271–1278 (2017). https://doi.org/10.1007/s11760-017-1084-9
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-017-1084-9