Skip to main content
Log in

Extended OMP algorithm for sparse phase retrieval

  • Original Paper
  • Published:
Signal, Image and Video Processing Aims and scope Submit manuscript

Abstract

We consider the problem of phase retrieval, namely recovering a signal from the magnitude of its linear measurements. Due to the loss of phase information, additional structure information about the signal is necessary. In this work, we focus our attention on sparse signals, i.e., signals consist of a small number of nonzero elements in an appropriate basis. The main contribution of this paper is that a novel algorithm for sparse phase retrieval and its modified version which has high recovery rate are proposed. Moreover, the quartic coherence of measurement matrix is first put forward to analyze recovery condition. The numerical results show that the proposed algorithm is accurate than existing techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ahmed, A., Recht, B., Romberg, J.: Blind deconvolution using convex programming. IEEE Trans. Inf. Theory 60(3), 1711–1732 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balouchestani, M., Krishnan, S.: Advanced K-means clustering algorithm for large ECG data sets based on a collaboration of compressed sensing theory and K-SVD approach. SIViP 10(1), 113–120 (2016)

    Article  Google Scholar 

  3. Basumallick, N., Narasimhan, S.V.: Improved bispectrum estimation based on modified group delay. SIViP 6(2), 273–286 (2012)

    Article  Google Scholar 

  4. Bauschke, H.H., Combettes, P.L., Luke, D.R.: Hybrid projectioncreflection method for phase retrieval. J. Opt. Soc. Am. A 20(6), 1025–1034 (2003)

    Article  Google Scholar 

  5. Beck, A., Eldar, Y.C.: Sparsity constrained nonlinear optimization: optimality conditions and algorithms. SIAM J. Optim. 23(3), 1480–1509 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bi, X., Chen, X., Li, X., Leng, L.: Energy-based adaptive matching pursuit algorithm for binary sparse signal reconstruction in compressed sensing. SIViP 8(6), 1039–1048 (2014)

    Article  Google Scholar 

  7. Bunk, O., Diaz, A., Pfeiffer, F., David, C., Schmitt, B., Satapathy, D., Veen, J.: Diffractive imaging for periodic samples: retrieving one-dimensional concentration profiles across microfluidic channels. Acta Crystallogr A 63(4), 306–314 (2007)

    Article  Google Scholar 

  8. Cai, T.T., Li, X., Ma, Z.: Optimal rates of convergence for noisy sparse phase retrieval via thresholded wirtinger flow. Ann. Stat. 44(5), 2221–2251 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Candès, E.J., Eldar, Y.C., Strohmer, T., Voroninski, V.: Phase retrieval via matrix completion. SIAM J. Imaging Sci. 6(1), 199–225 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Candès, E.J., Li, X., Soltanolkotabi, M.: Phase retrieval via wirtinger flow: theory and algorithms. IEEE Trans. Inf. Theory 61(4), 1985–2007 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  11. Candès, E.J., Strohmer, T., Voroninski, V.: Phaselift: exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math. 66(8), 1241–1274 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cetin, A.E., Ansari, R.: Convolution-based framework for signal recovery and applications. J. Opt. Soc. Am. A 5(8), 1193–1200 (1988)

    Article  MathSciNet  Google Scholar 

  13. Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ehler, M., Fornasier, M., Sigl, J.: Quasi-linear compressed sensing. Multiscale Model. Simul. 12(2), 725–754 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fienup, J.R.: Fine resolution imaging of space objects. Radar Opt. Division, Environmental Research Institute Michigan, Ann Arbor, MI, USA. Final Science Report 01/1982-1 (1982)

  16. Fienupet, J.R.: Phase retrieval algorithms: a comparison. Appl. Opt. 21(15), 2758–2769 (1982)

    Article  Google Scholar 

  17. Fienup, J.C., Dainty, J.R.: Phase retrieval and image reconstruction for astronomy. In: Stark, H. (ed.) Image Recovery: Theory and Application, pp. 231–275. Academic Press, Orlando, FL (1987)

    Google Scholar 

  18. Gerchberg, R.W., Saxton, W.O.: A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–250 (1972)

    Google Scholar 

  19. Harrison, R.W.: Phase problem in crystallography. J. Opt. Soc. Am. A 10(5), 1046–1055 (1993)

    Article  Google Scholar 

  20. Hashemi, S.M., Beheshti, S., Cobbold, R.S.C., Paul, N.S.: Subband-dependent compressed sensing in local CT reconstruction. SIViP 10(6), 1–7 (2016)

    Article  Google Scholar 

  21. Kwon, S., Wang, J., Shim, B.: Multipath matching pursuit. IEEE Trans. Inf. Theory 60(5), 2986–3001 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Li, X., Voroninski, V.: Sparse signal recovery from quadratic measurements via convex programming. SIAM J. Math. Anal. 45(5), 3019–3033 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Marchesini, S.: Invited article: a unified evaluation of iterative projection algorithms for phase retrieval. Rev. Sci. Instrum. 78(1), 11301–11301 (2006)

    Article  Google Scholar 

  24. Miao, J., Ishikawa, T., Shen, Q., Earnest, T.: Extending x-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexes. Annu. Rev. Phys. Chem. 59(1), 387–410 (2008)

    Article  Google Scholar 

  25. Millane, R.P.: Phase retrieval in crystallography and optics. J. Opt. Soc. Am. A 7(3), 394–411 (1990)

    Article  Google Scholar 

  26. Narasimhan, S.V., Basumallick, N., Chaitanya, R.: Improved phase estimation based on complete bispectrum and modified group delay. SIViP 2(3), 261–274 (2008)

    Article  MATH  Google Scholar 

  27. Quiney, H.M.: Coherent diffractive imaging using short wavelength light sources. J. Mod. Opt. 57(13), 1109–1149 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  28. Ranieri, J., Chebira, A., Lu, Y.M., Vetterli, M.: Phase retrieval for sparse signals: uniqueness conditions. IEEE Trans. Inf. Theory (2013). arXiv:1308.3058

  29. Rosenblatt, J.: Phase retrieval. Commun. Math. Phys. 95(3), 317–343 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rusu, C., Astola, J.: On the existence of the solution for one-dimensional discrete phase retrieval problem. Signal Image Video Process. 11, 195–202 (2017)

    Article  Google Scholar 

  31. Shechtman, Y., Beck, A., Eldar, Y.C.: Gespar: efficient phase retrieval of sparse signals. IEEE Trans. Signal Process. 62(4), 928–938 (2013)

    Article  MathSciNet  Google Scholar 

  32. Sigl, J.: Nonlinear residual minimization by iteratively reweighted least squares. Comput. Optim. Appl. 64(3), 755–792 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Voroninski, V., Xu, Z.: A strong restricted isometry property, with an application to phaseless compressed sensing. Appl. Comput. Harmon. Anal. 40(2), 386–395 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  34. Waldspurger, I., DAspremont, A., Mallat, S.: Phase recovery, maxcut and complex semidefinite programming. Math. Program. 149(1–2), 47–81 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Walther, A.: The question of phase retrieval in optics. Optica Acta 10(1), 41–49 (1963)

    Article  MathSciNet  Google Scholar 

  36. Wang, Y., Xu, Z.: Phase retrieval for sparse signals. Appl. Comput. Harmon. Anal. 37(3), 531–544 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  37. Yang, Z., Zhang, C., Xie, L.: Robust compressive phase retrieval via \(\ell _{1}\) minimization with application to image reconstruction. Physics (2013). arXiv:1302.0081

  38. Zoroofi, R.A., Sato, Y., Tamura, S., Naito, H., Tang, L.: An improved method for mri artifact correction due to translational motion in the imaging plane. IEEE Trans. Med. Imaging 14(3), 471–479 (2001)

    Article  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the National Natural Science Foundation of China under Grants 61271012 and 61671004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangrong Qu.

Appendix

Appendix

We need to prove that for any \(S\in \{1,\ldots ,n\}\) with \(|S|=s\), the right indices are selected at every iterations and \(\mathscr {A}_{S}\) is injective.

  1. (a)

    For the first iteration, one has to prove

    $$\begin{aligned} \max \limits _{j\in S}(\hbox {diag}(\mathscr {A}^{*}(y)))_{j}>\max \limits _{l\in \overline{S}}(\hbox {diag}(\mathscr {A}^{*}(y)))_{l}. \end{aligned}$$
    (3)

Let \(k\in S\) be chosen so that \(x_{k}=\max \limits _{j\in S}|x_{j}|>0\). Then

$$\begin{aligned} \begin{aligned} \hbox {diag}(\mathscr {A}^{*}(y)))_{k}&=\langle y,b_{k}\odot b_{k}\rangle \\&=\langle \mathscr {A}(xx^{*}),b_{k}\odot b_{k}\rangle \\&=\left\langle \sum _{p\in S}\sum _{q\in S}x_{p}x_{q}b_{p}\odot b_{q},b_{k}\odot b_{k}\right\rangle \\ \ge&|x_{k}|^{2}\langle b_{k}\odot b_{k},b_{k}\odot b_{k}\rangle \\&\quad -\left| \left\langle \sum _{\begin{array}{c} p,q\in S\\ \text {except}~ p=q=k \end{array}}x_{p}x_{q}b_{p}\odot b_{q},b_{k}\odot b_{k}\right\rangle \right| \\&\ge |x_{k}|^{2}-|x_{k}|^{2}(s^{2}-1)\nu . \end{aligned} \end{aligned}$$

Meanwhile, for \(l\in \overline{S}\), one has

$$\begin{aligned} \begin{aligned} \hbox {diag}(\mathscr {A}^{*}(y)))_{l}&=\langle y,b_{l}\odot b_{l}\rangle \\&=\left\langle \sum _{p\in S}\sum _{q\in S}x_{p}x_{q}b_{p}\odot b_{q},b_{l}\odot b_{l}\right\rangle \\&\le |x_{k}|^{2}s^{2}\nu . \end{aligned} \end{aligned}$$

Then, (3) is fulfilled provided \(1-(s^{2}-1)\nu >s^{2}\nu \), i.e.,

$$\begin{aligned} \begin{aligned} \nu <\frac{1}{2s^{2}-1}. \end{aligned} \end{aligned}$$
(4)
  1. (b)

    For the t-th iteration (\(t>1\)), one need to prove inequality

    $$\begin{aligned} \begin{aligned}&\max \limits _{j\in S}|(\mathscr {A}^{*}(\mathscr {A}(zz^\mathrm{T})-y)\cdot z)_{j}|\\&\quad >\max \limits _{l\in \overline{S}}|(\mathscr {A}^{*}(\mathscr {A}(zz^\mathrm{T})-y)\cdot z)_{l}| \end{aligned} \end{aligned}$$
    (5)

holds for any vectors \(z\in \mathbb {R}^{n}\) obtained by least-squares minimization in OMPPR algorithm. On the one hand, for \(l\in \overline{S}\),

$$\begin{aligned} \begin{aligned}&|(\mathscr {A}^{*}(\mathscr {A}(zz^\mathrm{T})-y)\cdot z)_{l}|=|(\mathscr {A}^{*}(\mathscr {A}(zz^\mathrm{T})-\mathscr {A}(xx^\mathrm{T}))\cdot z)_{l}|\\&\quad =\left| \left( \sum _{p\in S}\sum _{q\in S}(z_{p}z_{q}b_{p}\odot b_{q}-x_{p}x_{q}b_{p}\odot b_{q})\right) \right) \\&\qquad \left. \left. \odot \left( \sum _{i\in S}z_{i}b_{i}\right) ,b_{l}\right\rangle \right| \\&\quad =\left. \left| \left( \sum _{p\in S}\sum _{q\in S}(z_{p}z_{q}b_{p}\odot b_{q}-x_{p}x_{q}b_{p}\odot b_{q})\right) \right) ,\right. \\&\qquad \left. \left. b_{l}\odot \left( \sum _{i\in S}z_{i}b_{i}\right) \right\rangle \right| \\&\quad =\left| \sum _{p\in S}\sum _{q\in S}\sum _{i\in S}(z_{p}z_{q}-x_{p}x_{q})z_{i}\langle b_{p}\odot b_{q},b_{l}\odot b_{i}\rangle \right| \\&\quad \le \max \limits _{p,q,i\in S}|(z_{p}z_{q}-x_{p}x_{q})z_{i}|s^{3}\nu . \end{aligned} \end{aligned}$$

On the other hand, let \(k\in S\) be chosen so that \(k=\text {arg}\max \limits _{p\in S}|(|z_{p}|^{2}-|x_{p}|^{2})z_{p}|\),

$$\begin{aligned}&|(\mathscr {A}^{*}(\mathscr {A}(zz^\mathrm{T})-y)\cdot z)_{k}|\\&\quad =\left| \sum _{p\in S}\sum _{q\in S}\sum _{i\in S}(z_{p}z_{q}-x_{p}x_{q})z_{i}\langle b_{p}\odot b_{q},b_{k}\odot b_{i}\rangle \right| \\&\quad =|(|z_{k}|^{2}-|x_{k}|^{2})z_{k}|\cdot |\langle b_{k}\odot b_{k},b_{k}\odot b_{k}\rangle |\\&\qquad -\left| \sum _{\begin{array}{c} p,q,i\in S\\ \text {except}~ p=q=i=k \end{array}}(z_{p}z_{q}-x_{p}x_{q})z_{i}\langle b_{p}\odot b_{q},b_{k}\odot b_{i}\rangle \right| \\&\quad \ge |(|z_{k}|^{2}-|x_{k}|^{2})z_{k}|-\max \limits _{p,q,i\in S}|(z_{p}z_{q}-x_{p}x_{q})z_{i}|(s^{3}-1)\nu . \end{aligned}$$

So, (5) holds true if

$$\begin{aligned} \begin{aligned}&\max \limits _{p,q,i\in S}|(z_{p}z_{q}-x_{p}x_{q})z_{i}|s^{3}\nu \\&\quad <|(|z_{k}|^{2}-|x_{k}|^{2})z_{k}|-\max \limits _{p,q,i\in S}|(z_{p}z_{q}-x_{p}x_{q})z_{i}|(s^{3}-1)\nu . \end{aligned} \end{aligned}$$

Equivalently,

$$\begin{aligned} \begin{aligned} \nu <\frac{\max \limits _{p\in S}|(|z_{p}|^{2}-|x_{p}|^{2})z_{p}|}{\max \limits _{p,q,i\in S}|(z_{p}z_{q}-x_{p}x_{q})z_{i}|}\cdot \frac{1}{2s^{3}-1}. \end{aligned} \end{aligned}$$
(6)
  1. (c)

    Now we prove \(\mathscr {A}_{S}\) is injective.

Let \(zz^\mathrm{T}\in \mathscr {H}^{n\times n}\) be an eigenvector of \(\mathscr {A}_{S}^{*}\mathscr {A}_{S}\) associated with \(\lambda \), and choose j such that \(|z_{j}|\) is maximal, i.e., \(|z_{j}|=||z||_{\propto }\). Then \(\mathscr {A}_{S}^{*}(\mathscr {A}_{S}(zz^\mathrm{T}))_{jj}=\lambda |z_{j}|^{2}\), and a rearrangement gives

$$\begin{aligned} \begin{aligned}&(\lambda -\langle b_{j}\odot b_{j},b_{j}\odot b_{j}\rangle ) |z_{j}|^{2}\\&\quad =\left\langle \sum _{\begin{array}{c} p,q\in S\\ \text {except}~ p=q=j \end{array}}z_{p}z_{q}b_{p}\odot b_{q},b_{j}\odot b_{j}\right\rangle . \end{aligned} \end{aligned}$$

Hence,

$$\begin{aligned} \begin{aligned}&|\lambda -1| \cdot |z_{j}|^{2} \\&\quad \le \left| \left\langle \sum _{\begin{array}{c} p,q\in S\\ except~ p=q=j \end{array}}z_{p}z_{q}b_{p} \odot b_{q},b_{j}\odot b_{j}\right\rangle \right| \\&\quad \le (s^{2}-1)|z_{j}|^{2}\nu . \end{aligned} \end{aligned}$$

Equivalently,

$$\begin{aligned} \begin{aligned} |\lambda -1| \le (s^{2}-1)\nu . \end{aligned} \end{aligned}$$

One can obtain the minimum eigenvalue of \(\mathscr {A}_{S}^{*}\mathscr {A}_{S}\) \(\lambda _{min}\) satisfying \(\lambda _{min}\ge 1-(s^{2}-1)\nu \). Therefore, if

$$\begin{aligned} \begin{aligned} \nu <\frac{1}{s^{2}-1}, \end{aligned} \end{aligned}$$
(7)

\(\mathscr {A}_{S}^{*}\mathscr {A}_{S}\) is injective. To see that \(\mathscr {A}_{S}\) is injective, simply observe that \(\mathscr {A}_{S}(zz^\mathrm{T})=0\) yields \(\mathscr {A}_{S}^{*}(\mathscr {A}_{S}(zz^\mathrm{T}))=0\), so that \(zz^\mathrm{T}=0\).

Combining (4), (6) and (7), we require \(\nu \) satisfies (6). This completes our proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Qu, G. Extended OMP algorithm for sparse phase retrieval. SIViP 11, 1397–1403 (2017). https://doi.org/10.1007/s11760-017-1099-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11760-017-1099-2

Keywords

Navigation