Abstract
We consider the problem of phase retrieval, namely recovering a signal from the magnitude of its linear measurements. Due to the loss of phase information, additional structure information about the signal is necessary. In this work, we focus our attention on sparse signals, i.e., signals consist of a small number of nonzero elements in an appropriate basis. The main contribution of this paper is that a novel algorithm for sparse phase retrieval and its modified version which has high recovery rate are proposed. Moreover, the quartic coherence of measurement matrix is first put forward to analyze recovery condition. The numerical results show that the proposed algorithm is accurate than existing techniques.





Similar content being viewed by others
References
Ahmed, A., Recht, B., Romberg, J.: Blind deconvolution using convex programming. IEEE Trans. Inf. Theory 60(3), 1711–1732 (2012)
Balouchestani, M., Krishnan, S.: Advanced K-means clustering algorithm for large ECG data sets based on a collaboration of compressed sensing theory and K-SVD approach. SIViP 10(1), 113–120 (2016)
Basumallick, N., Narasimhan, S.V.: Improved bispectrum estimation based on modified group delay. SIViP 6(2), 273–286 (2012)
Bauschke, H.H., Combettes, P.L., Luke, D.R.: Hybrid projectioncreflection method for phase retrieval. J. Opt. Soc. Am. A 20(6), 1025–1034 (2003)
Beck, A., Eldar, Y.C.: Sparsity constrained nonlinear optimization: optimality conditions and algorithms. SIAM J. Optim. 23(3), 1480–1509 (2012)
Bi, X., Chen, X., Li, X., Leng, L.: Energy-based adaptive matching pursuit algorithm for binary sparse signal reconstruction in compressed sensing. SIViP 8(6), 1039–1048 (2014)
Bunk, O., Diaz, A., Pfeiffer, F., David, C., Schmitt, B., Satapathy, D., Veen, J.: Diffractive imaging for periodic samples: retrieving one-dimensional concentration profiles across microfluidic channels. Acta Crystallogr A 63(4), 306–314 (2007)
Cai, T.T., Li, X., Ma, Z.: Optimal rates of convergence for noisy sparse phase retrieval via thresholded wirtinger flow. Ann. Stat. 44(5), 2221–2251 (2016)
Candès, E.J., Eldar, Y.C., Strohmer, T., Voroninski, V.: Phase retrieval via matrix completion. SIAM J. Imaging Sci. 6(1), 199–225 (2011)
Candès, E.J., Li, X., Soltanolkotabi, M.: Phase retrieval via wirtinger flow: theory and algorithms. IEEE Trans. Inf. Theory 61(4), 1985–2007 (2014)
Candès, E.J., Strohmer, T., Voroninski, V.: Phaselift: exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pure Appl. Math. 66(8), 1241–1274 (2013)
Cetin, A.E., Ansari, R.: Convolution-based framework for signal recovery and applications. J. Opt. Soc. Am. A 5(8), 1193–1200 (1988)
Donoho, D.L.: Compressed sensing. IEEE Trans. Inf. Theory 52(4), 1289–1306 (2006)
Ehler, M., Fornasier, M., Sigl, J.: Quasi-linear compressed sensing. Multiscale Model. Simul. 12(2), 725–754 (2013)
Fienup, J.R.: Fine resolution imaging of space objects. Radar Opt. Division, Environmental Research Institute Michigan, Ann Arbor, MI, USA. Final Science Report 01/1982-1 (1982)
Fienupet, J.R.: Phase retrieval algorithms: a comparison. Appl. Opt. 21(15), 2758–2769 (1982)
Fienup, J.C., Dainty, J.R.: Phase retrieval and image reconstruction for astronomy. In: Stark, H. (ed.) Image Recovery: Theory and Application, pp. 231–275. Academic Press, Orlando, FL (1987)
Gerchberg, R.W., Saxton, W.O.: A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–250 (1972)
Harrison, R.W.: Phase problem in crystallography. J. Opt. Soc. Am. A 10(5), 1046–1055 (1993)
Hashemi, S.M., Beheshti, S., Cobbold, R.S.C., Paul, N.S.: Subband-dependent compressed sensing in local CT reconstruction. SIViP 10(6), 1–7 (2016)
Kwon, S., Wang, J., Shim, B.: Multipath matching pursuit. IEEE Trans. Inf. Theory 60(5), 2986–3001 (2013)
Li, X., Voroninski, V.: Sparse signal recovery from quadratic measurements via convex programming. SIAM J. Math. Anal. 45(5), 3019–3033 (2012)
Marchesini, S.: Invited article: a unified evaluation of iterative projection algorithms for phase retrieval. Rev. Sci. Instrum. 78(1), 11301–11301 (2006)
Miao, J., Ishikawa, T., Shen, Q., Earnest, T.: Extending x-ray crystallography to allow the imaging of noncrystalline materials, cells, and single protein complexes. Annu. Rev. Phys. Chem. 59(1), 387–410 (2008)
Millane, R.P.: Phase retrieval in crystallography and optics. J. Opt. Soc. Am. A 7(3), 394–411 (1990)
Narasimhan, S.V., Basumallick, N., Chaitanya, R.: Improved phase estimation based on complete bispectrum and modified group delay. SIViP 2(3), 261–274 (2008)
Quiney, H.M.: Coherent diffractive imaging using short wavelength light sources. J. Mod. Opt. 57(13), 1109–1149 (2010)
Ranieri, J., Chebira, A., Lu, Y.M., Vetterli, M.: Phase retrieval for sparse signals: uniqueness conditions. IEEE Trans. Inf. Theory (2013). arXiv:1308.3058
Rosenblatt, J.: Phase retrieval. Commun. Math. Phys. 95(3), 317–343 (1984)
Rusu, C., Astola, J.: On the existence of the solution for one-dimensional discrete phase retrieval problem. Signal Image Video Process. 11, 195–202 (2017)
Shechtman, Y., Beck, A., Eldar, Y.C.: Gespar: efficient phase retrieval of sparse signals. IEEE Trans. Signal Process. 62(4), 928–938 (2013)
Sigl, J.: Nonlinear residual minimization by iteratively reweighted least squares. Comput. Optim. Appl. 64(3), 755–792 (2016)
Voroninski, V., Xu, Z.: A strong restricted isometry property, with an application to phaseless compressed sensing. Appl. Comput. Harmon. Anal. 40(2), 386–395 (2015)
Waldspurger, I., DAspremont, A., Mallat, S.: Phase recovery, maxcut and complex semidefinite programming. Math. Program. 149(1–2), 47–81 (2015)
Walther, A.: The question of phase retrieval in optics. Optica Acta 10(1), 41–49 (1963)
Wang, Y., Xu, Z.: Phase retrieval for sparse signals. Appl. Comput. Harmon. Anal. 37(3), 531–544 (2014)
Yang, Z., Zhang, C., Xie, L.: Robust compressive phase retrieval via \(\ell _{1}\) minimization with application to image reconstruction. Physics (2013). arXiv:1302.0081
Zoroofi, R.A., Sato, Y., Tamura, S., Naito, H., Tang, L.: An improved method for mri artifact correction due to translational motion in the imaging plane. IEEE Trans. Med. Imaging 14(3), 471–479 (2001)
Acknowledgements
This work is partially supported by the National Natural Science Foundation of China under Grants 61271012 and 61671004.
Author information
Authors and Affiliations
Corresponding author
Appendix
Appendix
We need to prove that for any \(S\in \{1,\ldots ,n\}\) with \(|S|=s\), the right indices are selected at every iterations and \(\mathscr {A}_{S}\) is injective.
-
(a)
For the first iteration, one has to prove
$$\begin{aligned} \max \limits _{j\in S}(\hbox {diag}(\mathscr {A}^{*}(y)))_{j}>\max \limits _{l\in \overline{S}}(\hbox {diag}(\mathscr {A}^{*}(y)))_{l}. \end{aligned}$$(3)
Let \(k\in S\) be chosen so that \(x_{k}=\max \limits _{j\in S}|x_{j}|>0\). Then
Meanwhile, for \(l\in \overline{S}\), one has
Then, (3) is fulfilled provided \(1-(s^{2}-1)\nu >s^{2}\nu \), i.e.,
-
(b)
For the t-th iteration (\(t>1\)), one need to prove inequality
$$\begin{aligned} \begin{aligned}&\max \limits _{j\in S}|(\mathscr {A}^{*}(\mathscr {A}(zz^\mathrm{T})-y)\cdot z)_{j}|\\&\quad >\max \limits _{l\in \overline{S}}|(\mathscr {A}^{*}(\mathscr {A}(zz^\mathrm{T})-y)\cdot z)_{l}| \end{aligned} \end{aligned}$$(5)
holds for any vectors \(z\in \mathbb {R}^{n}\) obtained by least-squares minimization in OMPPR algorithm. On the one hand, for \(l\in \overline{S}\),
On the other hand, let \(k\in S\) be chosen so that \(k=\text {arg}\max \limits _{p\in S}|(|z_{p}|^{2}-|x_{p}|^{2})z_{p}|\),
So, (5) holds true if
Equivalently,
-
(c)
Now we prove \(\mathscr {A}_{S}\) is injective.
Let \(zz^\mathrm{T}\in \mathscr {H}^{n\times n}\) be an eigenvector of \(\mathscr {A}_{S}^{*}\mathscr {A}_{S}\) associated with \(\lambda \), and choose j such that \(|z_{j}|\) is maximal, i.e., \(|z_{j}|=||z||_{\propto }\). Then \(\mathscr {A}_{S}^{*}(\mathscr {A}_{S}(zz^\mathrm{T}))_{jj}=\lambda |z_{j}|^{2}\), and a rearrangement gives
Hence,
Equivalently,
One can obtain the minimum eigenvalue of \(\mathscr {A}_{S}^{*}\mathscr {A}_{S}\) \(\lambda _{min}\) satisfying \(\lambda _{min}\ge 1-(s^{2}-1)\nu \). Therefore, if
\(\mathscr {A}_{S}^{*}\mathscr {A}_{S}\) is injective. To see that \(\mathscr {A}_{S}\) is injective, simply observe that \(\mathscr {A}_{S}(zz^\mathrm{T})=0\) yields \(\mathscr {A}_{S}^{*}(\mathscr {A}_{S}(zz^\mathrm{T}))=0\), so that \(zz^\mathrm{T}=0\).
Combining (4), (6) and (7), we require \(\nu \) satisfies (6). This completes our proof.
Rights and permissions
About this article
Cite this article
Wang, Q., Qu, G. Extended OMP algorithm for sparse phase retrieval. SIViP 11, 1397–1403 (2017). https://doi.org/10.1007/s11760-017-1099-2
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11760-017-1099-2